Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel, UniPCMultistepScheduler
|
4 |
from huggingface_hub import login
|
5 |
import os
|
6 |
import spaces
|
|
|
|
|
7 |
from diffusers.utils import load_image, make_image_grid
|
8 |
import torch
|
9 |
-
from diffusers import StableDiffusionXLAdapterPipeline,T2IAdapter
|
10 |
-
from diffusers.schedulers import UniPCMultistepScheduler
|
11 |
|
12 |
# Log in to Hugging Face with your token
|
13 |
token = os.getenv("HF_TOKEN")
|
14 |
login(token=token)
|
15 |
|
|
|
16 |
|
17 |
-
|
18 |
-
"stabilityai/sdxl-turbo",
|
19 |
-
)
|
20 |
-
pipe.load_ip_adapter("TencentARC/T2I-Adapter",
|
21 |
subfolder="models",
|
22 |
weight_name="t2iadapter_style_sd14v1.pth")
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
pipe.to("cuda", torch.float16)
|
27 |
|
28 |
# controlnet = SD3ControlNetModel.from_pretrained("alimama-creative/SD3-Controlnet-Softedge", torch_dtype=torch.float16)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from huggingface_hub import login
|
3 |
import os
|
4 |
import spaces
|
5 |
+
from diffusers.schedulers import UniPCMultistepScheduler
|
6 |
+
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
|
7 |
from diffusers.utils import load_image, make_image_grid
|
8 |
import torch
|
|
|
|
|
9 |
|
10 |
# Log in to Hugging Face with your token
|
11 |
token = os.getenv("HF_TOKEN")
|
12 |
login(token=token)
|
13 |
|
14 |
+
model_id = 'stabilityai/sdxl-turbo'
|
15 |
|
16 |
+
adapter = StableDiffusionXLAdapterPipeline.load_ip_adapter("TencentARC/T2I-Adapter",
|
|
|
|
|
|
|
17 |
subfolder="models",
|
18 |
weight_name="t2iadapter_style_sd14v1.pth")
|
19 |
|
20 |
+
euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
21 |
+
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix",)
|
22 |
+
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
23 |
+
model_id, vae=vae, adapter=adapter, scheduler=euler_a, variant="fp16",
|
24 |
+
)
|
25 |
+
pipe.enable_xformers_memory_efficient_attention()
|
26 |
pipe.to("cuda", torch.float16)
|
27 |
|
28 |
# controlnet = SD3ControlNetModel.from_pretrained("alimama-creative/SD3-Controlnet-Softedge", torch_dtype=torch.float16)
|