amos1088 commited on
Commit
5a5a07a
·
1 Parent(s): 33b527c

test gradio

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -4,6 +4,7 @@ from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel, Un
4
  from huggingface_hub import login
5
  import os
6
  import spaces
 
7
  # Log in to Hugging Face with your token
8
  token = os.getenv("HF_TOKEN")
9
  login(token=token)
@@ -21,9 +22,9 @@ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
21
  pipe = pipe.to("cuda")
22
 
23
  @spaces.GPU
24
- def generate_image(prompt, reference_image,controlnet_conditioning_scale):
25
  # Prepare the reference image for ControlNet
26
- reference_image = reference_image.convert("RGB").resize((1024, 1024))
27
 
28
  # Generate the image with ControlNet conditioning
29
  generated_image = pipe(
@@ -31,7 +32,7 @@ def generate_image(prompt, reference_image,controlnet_conditioning_scale):
31
  control_image=reference_image,
32
  controlnet_conditioning_scale=controlnet_conditioning_scale,
33
  guidance_scale=7.5,
34
- num_inference_steps=50
35
  ).images[0]
36
  return generated_image
37
 
@@ -41,7 +42,7 @@ interface = gr.Interface(
41
  inputs=[
42
  gr.Textbox(label="Prompt"),
43
  gr.Image(type="pil", label="Reference Image (Style)"),
44
- gr.Slider(label="Control Net Conditioning Scale",minimum=0,maximum=1),
45
  ],
46
  outputs="image",
47
  title="Image Generation with Stable Diffusion 3.5 and ControlNet",
 
4
  from huggingface_hub import login
5
  import os
6
  import spaces
7
+
8
  # Log in to Hugging Face with your token
9
  token = os.getenv("HF_TOKEN")
10
  login(token=token)
 
22
  pipe = pipe.to("cuda")
23
 
24
  @spaces.GPU
25
+ def generate_image(prompt, reference_image, controlnet_conditioning_scale):
26
  # Prepare the reference image for ControlNet
27
+ reference_image = reference_image.convert("RGB").resize((1024, 1024), Image.LANCZOS)
28
 
29
  # Generate the image with ControlNet conditioning
30
  generated_image = pipe(
 
32
  control_image=reference_image,
33
  controlnet_conditioning_scale=controlnet_conditioning_scale,
34
  guidance_scale=7.5,
35
+ num_inference_steps=75 # Increased from 50 to refine quality
36
  ).images[0]
37
  return generated_image
38
 
 
42
  inputs=[
43
  gr.Textbox(label="Prompt"),
44
  gr.Image(type="pil", label="Reference Image (Style)"),
45
+ gr.Slider(label="Control Net Conditioning Scale", minimum=0.5, maximum=2.0, step=0.1, value=1.0),
46
  ],
47
  outputs="image",
48
  title="Image Generation with Stable Diffusion 3.5 and ControlNet",