Spaces:
Paused
Paused
test gradio
Browse files
app.py
CHANGED
@@ -77,6 +77,7 @@ gif_pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
|
|
77 |
torch_dtype=torch.float16,
|
78 |
).to(device)
|
79 |
gif_pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
|
|
|
80 |
|
81 |
|
82 |
|
@@ -143,12 +144,14 @@ This way, each frame represents a distinct scene, and there’s no redundancy be
|
|
143 |
frames = ask_gpt(massage_history,return_str=False)['frames']
|
144 |
conditioning_frames = []
|
145 |
controlnet_frame_indices =[]
|
|
|
146 |
for frame in frames:
|
147 |
conditioning_frames.append(generate_image(frame['description'], reference_image, float(controlnet_conditioning_scale)))
|
148 |
controlnet_frame_indices.append(frame['frame_index'])
|
|
|
149 |
|
150 |
video = gif_pipe(
|
151 |
-
prompt=
|
152 |
negative_prompt="low quality, worst quality",
|
153 |
num_inference_steps=25,
|
154 |
conditioning_frames=conditioning_frames,
|
@@ -159,9 +162,26 @@ This way, each frame represents a distinct scene, and there’s no redundancy be
|
|
159 |
|
160 |
return "animation.gif"
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
# # Set up Gradio interface
|
163 |
# interface = gr.Interface(
|
164 |
-
# fn=
|
165 |
# inputs=[
|
166 |
# gr.Textbox(label="Prompt"),
|
167 |
# # gr.Image( type= "filepath",label="Reference Image (Style)"),
|
@@ -170,29 +190,12 @@ This way, each frame represents a distinct scene, and there’s no redundancy be
|
|
170 |
# gr.Slider(label="Number of frames", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
171 |
#
|
172 |
# ],
|
173 |
-
# outputs="
|
174 |
# title="Image Generation with Stable Diffusion 3 medium and ControlNet",
|
175 |
# description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet."
|
176 |
#
|
177 |
# )
|
178 |
|
179 |
-
# Set up Gradio interface
|
180 |
-
interface = gr.Interface(
|
181 |
-
fn=generate_frames,
|
182 |
-
inputs=[
|
183 |
-
gr.Textbox(label="Prompt"),
|
184 |
-
# gr.Image( type= "filepath",label="Reference Image (Style)"),
|
185 |
-
gr.File(type="filepath",file_count="multiple",label="Reference Image (Style)"),
|
186 |
-
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
187 |
-
gr.Slider(label="Number of frames", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
188 |
-
|
189 |
-
],
|
190 |
-
outputs="gallery",
|
191 |
-
title="Image Generation with Stable Diffusion 3 medium and ControlNet",
|
192 |
-
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet."
|
193 |
-
|
194 |
-
)
|
195 |
-
|
196 |
interface.launch()
|
197 |
|
198 |
|
|
|
77 |
torch_dtype=torch.float16,
|
78 |
).to(device)
|
79 |
gif_pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
|
80 |
+
gif_pipe.enable_free_noise(context_length=16, context_stride=4)
|
81 |
|
82 |
|
83 |
|
|
|
144 |
frames = ask_gpt(massage_history,return_str=False)['frames']
|
145 |
conditioning_frames = []
|
146 |
controlnet_frame_indices =[]
|
147 |
+
long_prompt = {}
|
148 |
for frame in frames:
|
149 |
conditioning_frames.append(generate_image(frame['description'], reference_image, float(controlnet_conditioning_scale)))
|
150 |
controlnet_frame_indices.append(frame['frame_index'])
|
151 |
+
long_prompt[frame['frame_index']] = frame['description']
|
152 |
|
153 |
video = gif_pipe(
|
154 |
+
prompt=long_prompt,
|
155 |
negative_prompt="low quality, worst quality",
|
156 |
num_inference_steps=25,
|
157 |
conditioning_frames=conditioning_frames,
|
|
|
162 |
|
163 |
return "animation.gif"
|
164 |
|
165 |
+
# Set up Gradio interface
|
166 |
+
interface = gr.Interface(
|
167 |
+
fn=generate_gif,
|
168 |
+
inputs=[
|
169 |
+
gr.Textbox(label="Prompt"),
|
170 |
+
# gr.Image( type= "filepath",label="Reference Image (Style)"),
|
171 |
+
gr.File(type="filepath",file_count="multiple",label="Reference Image (Style)"),
|
172 |
+
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
173 |
+
gr.Slider(label="Number of frames", minimum=0, maximum=100.0, step=1.0, value=10.0),
|
174 |
+
|
175 |
+
],
|
176 |
+
outputs="image",
|
177 |
+
title="Image Generation with Stable Diffusion 3 medium and ControlNet",
|
178 |
+
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet."
|
179 |
+
|
180 |
+
)
|
181 |
+
|
182 |
# # Set up Gradio interface
|
183 |
# interface = gr.Interface(
|
184 |
+
# fn=generate_frames,
|
185 |
# inputs=[
|
186 |
# gr.Textbox(label="Prompt"),
|
187 |
# # gr.Image( type= "filepath",label="Reference Image (Style)"),
|
|
|
190 |
# gr.Slider(label="Number of frames", minimum=0, maximum=1.0, step=0.1, value=1.0),
|
191 |
#
|
192 |
# ],
|
193 |
+
# outputs="gallery",
|
194 |
# title="Image Generation with Stable Diffusion 3 medium and ControlNet",
|
195 |
# description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet."
|
196 |
#
|
197 |
# )
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
interface.launch()
|
200 |
|
201 |
|