Spaces:
Paused
Paused
import gradio as gr | |
from huggingface_hub import login | |
import os | |
import spaces | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
from PIL import Image | |
from ip_adapter import IPAdapterXL | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
image_encoder_path = "sdxl_models/image_encoder" | |
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin" | |
device = "cuda" | |
# load SDXL pipeline | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
add_watermarker=False, | |
) | |
# reduce memory consumption | |
pipe.enable_vae_tiling() | |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"]) | |
def generate_image(prompt, reference_image, controlnet_conditioning_scale): | |
image = Image.open(reference_image) | |
image.resize((512, 512)) | |
images = ip_model.generate(pil_image=image, | |
prompt=prompt, | |
negative_prompt="", | |
scale=controlnet_conditioning_scale, | |
guidance_scale=5, | |
num_samples=1, | |
num_inference_steps=30, | |
seed=42, | |
# neg_content_prompt="a rabbit", | |
# neg_content_scale=0.5, | |
) | |
return images[0] | |
# Set up Gradio interface | |
interface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Image( type= "filepath",label="Reference Image (Style)"), | |
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=0.6), | |
], | |
outputs="image", | |
title="Image Generation with Stable Diffusion 3 medium and ControlNet", | |
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet." | |
) | |
interface.launch() | |