Spaces:
Paused
Paused
import gradio as gr | |
import torch | |
# from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel, UniPCMultistepScheduler | |
from diffusers import StableDiffusionXLPipeline,T2IAdapter | |
from huggingface_hub import login | |
import os | |
import spaces | |
from diffusers.utils import load_image, make_image_grid | |
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
# # Load the T2I-Style Adapter and the SDXL pipeline | |
# adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-style-sdxl") | |
# pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | |
# "stabilityai/stable-diffusion-xl-base-1.0", | |
# adapter=adapter, | |
# ) | |
# | |
# # Set up the scheduler and device | |
# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# pipe.to("cuda", torch.float16) | |
# controlnet = SD3ControlNetModel.from_pretrained("alimama-creative/SD3-Controlnet-Softedge", torch_dtype=torch.float16) | |
# pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet) | |
adapter = T2IAdapter.from_pretrained( | |
"TencentARC/t2iadapter_color_sd14v1", torch_dtype=torch.float16, varient="fp16" | |
) | |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0' | |
euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | |
model_id, vae=vae, adapter=adapter, scheduler=euler_a, torch_dtype=torch.float16, variant="fp16", | |
) | |
pipe.to("cuda", torch.float16) | |
def generate_image(prompt, reference_image, controlnet_conditioning_scale): | |
# Generate the image with ControlNet conditioning | |
generated_image = pipe( | |
prompt=prompt, | |
ip_adapter_image=load_image(reference_image), | |
adapter_conditioning_scale=controlnet_conditioning_scale, | |
).images[0] | |
return generated_image | |
# Set up Gradio interface | |
interface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Image( type= "filepath",label="Reference Image (Style)"), | |
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=0.6), | |
], | |
outputs="image", | |
title="Image Generation with Stable Diffusion 3 medium and ControlNet", | |
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet." | |
) | |
interface.launch() | |