Spaces:
Paused
Paused
import torch | |
from diffusers.models import MotionAdapter | |
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler | |
from diffusers.utils import export_to_gif | |
import gradio as gr | |
from huggingface_hub import login | |
import os | |
import spaces,tempfile | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
from PIL import Image | |
import torch | |
from diffusers import AutoPipelineForText2Image, DDIMScheduler | |
from diffusers import AutoPipelineForText2Image | |
from diffusers.utils import load_image | |
import torch | |
from diffusers.models import MotionAdapter | |
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler | |
from diffusers.utils import export_to_gif | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16) | |
model_id = "stabilityai/sdxl-turbo" | |
scheduler = DDIMScheduler.from_pretrained( | |
model_id, | |
subfolder="scheduler", | |
clip_sample=False, | |
timestep_spacing="linspace", | |
beta_schedule="linear", | |
steps_offset=1, | |
) | |
pipe = AnimateDiffSDXLPipeline.from_pretrained( | |
model_id, | |
motion_adapter=adapter, | |
scheduler=scheduler, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
).to("cuda") | |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
# enable memory savings | |
pipe.enable_vae_slicing() | |
pipe.enable_vae_tiling() | |
pipeline = pipe | |
def generate_image(prompt, reference_image, controlnet_conditioning_scale,num_frames): | |
style_images = [load_image(f.name) for f in reference_image] | |
pipeline.set_ip_adapter_scale(controlnet_conditioning_scale) | |
output = pipeline( | |
prompt=prompt, | |
ip_adapter_image=[style_images], | |
negative_prompt="", | |
guidance_scale=5, | |
num_inference_steps=30, | |
num_frames=num_frames, | |
) | |
frames = output.frames[0] | |
export_to_gif(frames, "animation.gif") | |
return "animation.gif" | |
# Set up Gradio interface | |
interface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
# gr.Image( type= "filepath",label="Reference Image (Style)"), | |
gr.File(type="file",file_count="multiple",label="Reference Image (Style)"), | |
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0), | |
gr.Slider(label="Number of frames", minimum=0, maximum=1.0, step=0.1, value=1.0), | |
], | |
outputs="image", | |
title="Image Generation with Stable Diffusion 3 medium and ControlNet", | |
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet." | |
) | |
interface.launch() | |