Spaces:
Paused
Paused
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler | |
import gradio as gr | |
from huggingface_hub import login | |
import os | |
import spaces,tempfile | |
import torch | |
from diffusers import AnimateDiffSparseControlNetPipeline | |
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel | |
from diffusers.schedulers import DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_gif, load_image | |
from diffusers import AutoPipelineForText2Image | |
import openai,json | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
model_id = "stabilityai/stable-diffusion-2-base" | |
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) | |
lora_path = "Jl-wei/ui-diffuser-v2" | |
pipe.load_lora_weights(lora_path) | |
pipe.to("cuda") | |
def gui_generation(text, num_imgs): | |
prompt = f"Mobile app: {text}" | |
images = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, height=512, width=288, num_images_per_prompt=num_imgs).images | |
yield images | |
with gr.Blocks() as demo: | |
gallery = gr.Gallery(columns=[3], rows=[1], object_fit="contain", height="auto") | |
number_slider = gr.Slider(1, 30, value=2, step=1, label="Batch size") | |
prompt_box = gr.Textbox(label="Prompt", placeholder="Health monittoring report") | |
gr.Interface(gui_generation, inputs=[prompt_box, number_slider], outputs=gallery) | |
if __name__ == "__main__": | |
demo.launch() |