Spaces:
Paused
Paused
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
| from huggingface_hub import login | |
| import os | |
| import spaces | |
| # Log in to Hugging Face with your token | |
| token = os.getenv("HF_TOKEN") | |
| login(token=token) | |
| # Model IDs for Stable Diffusion 1.5 and ControlNet | |
| model_id = "runwayml/stable-diffusion-v1-5" # Compatible with ControlNet | |
| controlnet_id = "lllyasviel/control_v11p_sd15_inpaint" | |
| # Load the ControlNet model and Stable Diffusion pipeline | |
| controlnet = ControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16) | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| model_id, controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe = pipe.to("cuda") | |
| def generate_image(prompt, reference_image): | |
| # Prepare the reference image for ControlNet | |
| reference_image = reference_image.convert("RGB").resize((512, 512)) | |
| # Generate the image with ControlNet conditioning | |
| generated_image = pipe( | |
| prompt=prompt, | |
| image=reference_image, | |
| controlnet_conditioning_scale=1.0, | |
| guidance_scale=7.5, | |
| num_inference_steps=50 | |
| ).images[0] | |
| return generated_image | |
| # Set up Gradio interface | |
| interface = gr.Interface( | |
| fn=generate_image, | |
| inputs=[ | |
| gr.Textbox(label="Prompt"), | |
| gr.Image(type="pil", label="Reference Image (Style)") | |
| ], | |
| outputs="image", | |
| title="Image Generation with Stable Diffusion 1.5 and ControlNet", | |
| description="Generates an image based on a text prompt and a reference image using Stable Diffusion 1.5 with ControlNet." | |
| ) | |
| # Launch the Gradio interface | |
| interface.launch() | |