Spaces:
Paused
Paused
import gradio as gr | |
from huggingface_hub import login | |
import os | |
import spaces,tempfile | |
import torch | |
from diffusers import AnimateDiffSparseControlNetPipeline | |
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel | |
from diffusers.schedulers import DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_gif, load_image | |
from diffusers import AutoPipelineForText2Image | |
import openai,json | |
import torch | |
from diffusers.models import MotionAdapter | |
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler | |
from diffusers.utils import export_to_gif | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
openai_token = os.getenv("OPENAI_TOKEN") | |
openai.api_key = openai_token | |
openaiclient = openai.OpenAI(api_key=openai.api_key) | |
def ask_gpt(massage_history,model="gpt-4o-mini",return_str=True,response_format={"type": "json_object"}): | |
response = openaiclient.chat.completions.create( | |
model=model, | |
messages=massage_history, | |
response_format=response_format, | |
max_tokens=4000, ) | |
if return_str: | |
return response.choices[0].message.content | |
else: | |
return json.loads(response.choices[0].message.content) | |
image_pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda") | |
image_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
def generate_image(prompt, reference_image, controlnet_conditioning_scale): | |
style_images = [load_image(f.name) for f in reference_image] | |
image_pipeline.set_ip_adapter_scale(controlnet_conditioning_scale) | |
image = image_pipeline( | |
prompt=prompt, | |
ip_adapter_image=[style_images], | |
negative_prompt="", | |
guidance_scale=5, | |
num_inference_steps=30, | |
).images[0] | |
return image | |
vae_id = "stabilityai/sd-vae-ft-mse" | |
device = "cuda" | |
adapter = MotionAdapter.from_pretrained( | |
"a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16 | |
) | |
model_id = "stabilityai/sdxl-turbo" | |
scheduler = DDIMScheduler.from_pretrained( | |
model_id, | |
subfolder="scheduler", | |
clip_sample=False, | |
timestep_spacing="linspace", | |
beta_schedule="linear", | |
steps_offset=1, | |
) | |
gif_pipe = AnimateDiffSDXLPipeline.from_pretrained( | |
model_id, | |
motion_adapter=adapter, | |
scheduler=scheduler, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
).to("cuda") | |
# enable memory savings | |
gif_pipe.enable_vae_slicing() | |
gif_pipe.enable_vae_tiling() | |
gif_pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
def generate_gif(prompt, reference_image, controlnet_conditioning_scale,style_conditioning_scale,num_frames): | |
image= generate_image(prompt, reference_image, float(style_conditioning_scale)) | |
video = gif_pipe( | |
prompt=prompt, | |
ip_adapter_image=[image], | |
negative_prompt="low quality, worst quality", | |
num_inference_steps=25, | |
guidance_scale=8, | |
num_frames=int(num_frames) | |
).frames[0] | |
export_to_gif(video, "output.gif") | |
yield (conditioning_frames, "output.gif") | |
# Set up Gradio interface | |
interface = gr.Interface( | |
fn=generate_gif, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
# gr.Image( type= "filepath",label="Reference Image (Style)"), | |
gr.File(type="filepath",file_count="multiple",label="Reference Image (Style)"), | |
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0), | |
gr.Slider(label="Style Scale", minimum=0, maximum=1.0, step=0.1, value=0.6), | |
gr.Slider(label="Number of frames", minimum=0, maximum=100.0, step=1.0, value=10.0), | |
], | |
outputs=["gallery","image"], | |
title="Image Generation with Stable Diffusion 3 medium and ControlNet", | |
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet." | |
) | |
interface.launch() | |