Spaces:
Paused
Paused
File size: 1,525 Bytes
604797f a4cc7b2 604797f a4cc7b2 604797f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from huggingface_hub import login
import os
import spaces
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
import tempfile
token = os.getenv("HF_TOKEN")
login(token=token)
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
@spaces.GPU
def generate_image(prompt, reference_image, controlnet_conditioning_scale):
style_images = [load_image(f.name) for f in reference_image]
pipeline.set_ip_adapter_scale(controlnet_conditioning_scale)
image = pipeline(
prompt=prompt,
ip_adapter_image=[style_images],
negative_prompt="",
guidance_scale=5,
num_inference_steps=30,
).images[0]
return image
# Set up Gradio interface
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
# gr.Image( type= "filepath",label="Reference Image (Style)"),
gr.File(file_count="multiple",label="Reference Image (Style)"),
gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
],
outputs="image",
title="Image Generation with Stable Diffusion 3 medium and ControlNet",
description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet."
)
interface.launch()
|