Spaces:
Paused
Paused
File size: 2,524 Bytes
683afc3 88d1237 3aadc38 0737dc8 3aadc38 38e6a4b 4fbc46c c1497a6 3aadc38 a4cc7b2 4de092c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
import torch
from PIL import Image
from models.transformer_sd3 import SD3Transformer2DModel
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
import os
from huggingface_hub import login
token = os.getenv("HF_TOKEN")
login(token=token)
# Model and paths
model_path = 'stabilityai/stable-diffusion-3.5-large'
ip_adapter_path = './ip-adapter.bin'
image_encoder_path = "google/siglip-so400m-patch14-384"
ref_img_path = './assets/1.jpg' # Reference image path
# Load SD3.5 pipeline and components
transformer = SD3Transformer2DModel.from_pretrained(
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = StableDiffusion3Pipeline.from_pretrained(
model_path, transformer=transformer, torch_dtype=torch.bfloat16
).to("cuda")
pipe.init_ipadapter(
ip_adapter_path=ip_adapter_path,
image_encoder_path=image_encoder_path,
nb_token=64,
)
@gr.Interface()
def gui_generation(prompt: str, negative_prompt: str, ipadapter_scale: float, num_imgs: int):
"""
Generate images based on prompt, negative prompt, and IP-Adapter scale.
"""
ref_img = Image.open(ref_img_path).convert('RGB') # Load reference image
generator = torch.Generator("cuda").manual_seed(42) # Reproducibility
images = []
for _ in range(num_imgs):
output = pipe(
width=1024,
height=1024,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=24,
guidance_scale=5.0,
generator=generator,
clip_image=ref_img,
ipadapter_scale=ipadapter_scale,
).images[0]
images.append(output)
return images
# Gradio UI elements
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter your generation prompt here")
negative_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="e.g., lowres, worst quality")
ipadapter_slider = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="IP-Adapter Scale")
number_slider = gr.Slider(1, 5, value=1, step=1, label="Number of Images")
gallery = gr.Gallery(label="Generated Images", columns=[3], rows=[1], object_fit="contain", height="auto")
interface = gr.Interface(
gui_generation,
inputs=[prompt_box, negative_prompt_box, ipadapter_slider, number_slider],
outputs=gallery,
title="Stable Diffusion 3.5 Image Generation with IP-Adapter",
description="Generate high-quality images with Stable Diffusion 3.5 Large and IP-Adapter guidance."
)
interface.launch()
|