amongusrickroll68 commited on
Commit
e1d53b6
·
1 Parent(s): b4e4dd0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import tensorflow as tf
3
+ import librosa
4
+ git lfs install
5
+ git clone https://huggingface.co/amongusrickroll68/MeloMind
6
+ from diffusers import DiffusionPipeline
7
+
8
+ pipeline = DiffusionPipeline.from_pretrained("amongusrickroll68/MeloMind")
9
+ class TextToMusicGenerator:
10
+ def __init__(self):
11
+ self.model = tf.keras.models.load_model('path/to/model')
12
+ self.sampling_rate = 22050
13
+
14
+ def generate_music(self, prompt):
15
+ prompt_encoded = self._encode_prompt(prompt)
16
+ sequence = self._generate_sequence(prompt_encoded)
17
+ audio = self._sequence_to_audio(sequence)
18
+ return audio
19
+
20
+ def _encode_prompt(self, prompt):
21
+ # encode text prompt as input for the model
22
+ # ...
23
+ return prompt_encoded
24
+
25
+ def _generate_sequence(self, prompt_encoded):
26
+ # generate sequence of musical notes from encoded prompt
27
+ # ...
28
+ return sequence
29
+
30
+ def _sequence_to_audio(self, sequence):
31
+ # convert sequence to audio waveform
32
+ notes = self._sequence_to_notes(sequence)
33
+ audio = self._notes_to_audio(notes)
34
+ return audio
35
+
36
+ def _sequence_to_notes(self, sequence):
37
+ # convert sequence of musical notes to Note objects
38
+ # ...
39
+ return notes
40
+
41
+ def _notes_to_audio(self, notes):
42
+ # convert Note objects to audio waveform
43
+ # ...
44
+ return audio
45
+
46
+ generator = TextToMusicGenerator()
47
+ prompt = "Generate a cheerful and upbeat song in the key of C major with a tempo of 120 bpm"
48
+ audio = generator.generate_music(prompt)
49
+ librosa.output.write_wav('generated_music.wav', audio, sr=generator.sampling_rate)
50
+