File size: 5,958 Bytes
f5290c6 b3e8793 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
from transformers import pipeline
import numpy as np
import torch
# Set page configuration
st.set_page_config(
page_title="Sentiment Analysis API",
page_icon="π",
layout="centered",
initial_sidebar_state="collapsed",
)
# App title and description
st.title("Sentiment Analysis API")
st.write("This API uses a pre-trained BERT model to classify text sentiment as positive, negative, or neutral.")
# Load the sentiment analysis model
@st.cache_resource
def load_model():
return pipeline('sentiment-analysis', model="cardiffnlp/twitter-roberta-base-sentiment")
# Get the model
model = load_model()
# Sample text examples
examples = [
"I absolutely love this new feature! It's amazing.",
"This product is terrible and doesn't work as advertised.",
"The weather is just okay today, nothing special."
]
# Create the UI elements
text_input = st.text_area("Enter text to analyze:", height=150,
placeholder="Type or paste your text here...")
# Add example buttons
st.write("Or try one of these examples:")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Positive Example"):
text_input = examples[0]
with col2:
if st.button("Negative Example"):
text_input = examples[1]
with col3:
if st.button("Neutral Example"):
text_input = examples[2]
# Function to analyze and display sentiment
def analyze_sentiment(text):
try:
result = model(text)[0]
# Map labels to user-friendly sentiment names
sentiment_mapping = {
'LABEL_0': 'Negative',
'LABEL_1': 'Neutral',
'LABEL_2': 'Positive'
}
sentiment = sentiment_mapping[result['label']]
confidence = result['score']
# Display results with color-coded box
if sentiment == "Positive":
st.success(f"Sentiment: {sentiment} (Confidence: {confidence:.4f})")
elif sentiment == "Negative":
st.error(f"Sentiment: {sentiment} (Confidence: {confidence:.4f})")
else:
st.info(f"Sentiment: {sentiment} (Confidence: {confidence:.4f})")
# Display confidence as a progress bar
st.progress(confidence)
# Show detailed sentiment breakdown
st.subheader("Sentiment Breakdown")
sentiment_data = {
'Sentiment': ['Negative', 'Neutral', 'Positive'],
'Score': [0, 0, 0] # Default values
}
# Update the score for the detected sentiment
if sentiment == "Positive":
sentiment_data['Score'][2] = confidence
elif sentiment == "Negative":
sentiment_data['Score'][0] = confidence
else:
sentiment_data['Score'][1] = confidence
# Display as a horizontal bar chart
st.bar_chart(sentiment_data, x='Sentiment', y='Score')
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# Process the text when the analyze button is clicked
if st.button("Analyze Sentiment") and text_input:
with st.spinner("Analyzing sentiment..."):
analyze_sentiment(text_input)
elif text_input:
st.info("Click 'Analyze Sentiment' to process the text.")
else:
st.info("Please enter some text to analyze.")
def analyze_sentiment(text):
try:
if len(text.split()) > 512:
st.error("Input too long (max 512 words). Please shorten the text.")
return
result = model(text)[0]
sentiment_mapping = {
'LABEL_0': 'Negative',
'LABEL_1': 'Neutral',
'LABEL_2': 'Positive'
}
sentiment = sentiment_mapping[result['label']]
confidence = result['score']
if sentiment == "Positive":
st.success(f"Sentiment: {sentiment} (Confidence: {confidence:.4f})")
elif sentiment == "Negative":
st.error(f"Sentiment: {sentiment} (Confidence: {confidence:.4f})")
else:
st.info(f"Sentiment: {sentiment} (Confidence: {confidence:.4f})")
st.progress(confidence)
st.subheader("Sentiment Breakdown")
sentiment_data = {
'Sentiment': ['Negative', 'Neutral', 'Positive'],
'Score': [0, 0, 0]
}
if sentiment == "Positive":
sentiment_data['Score'][2] = confidence
elif sentiment == "Negative":
sentiment_data['Score'][0] = confidence
else:
sentiment_data['Score'][1] = confidence
st.bar_chart(sentiment_data, x='Sentiment', y='Score')
except Exception as e:
st.error(f"Error analyzing sentiment: {str(e)}. Please try again or use shorter text.")
# Add information about the model
with st.expander("About the Model"):
st.write("""
This application uses the `cardiffnlp/twitter-roberta-base-sentiment` model from Hugging Face.
The model is a RoBERTa-base model trained on ~58M tweets and fine-tuned for sentiment analysis
with the TweetEval benchmark. It classifies text into three sentiment categories:
- Negative (LABEL_0)
- Neutral (LABEL_1)
- Positive (LABEL_2)
Source: [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment)
""")
with st.expander("Model Performance"):
st.write("Tested on 100 samples from `tweet_eval` dataset.")
if st.button("Show Test Accuracy"):
from datasets import load_dataset
dataset = load_dataset("tweet_eval", "sentiment", split="test[:100]")
correct = sum(1 for text, label in zip(dataset['text'], dataset['label']) if (2 if model(text)[0]['label'] == 'LABEL_2' else 0 if model(text)[0]['label'] == 'LABEL_0' else 1) == label)
st.write(f"Accuracy: {correct/100:.2f}")
# Footer
st.markdown("---")
st.markdown("Created as part of Mini Project 1: Sentiment Analysis API") |