Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
from huggingface_hub import InferenceClient
|
|
|
4 |
import random
|
|
|
5 |
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
6 |
|
7 |
-
models=[
|
8 |
"google/gemma-7b",
|
9 |
"google/gemma-7b-it",
|
10 |
"google/gemma-2b",
|
11 |
"google/gemma-2b-it"
|
12 |
]
|
13 |
-
|
14 |
-
|
15 |
-
InferenceClient(models[
|
16 |
-
InferenceClient(models[
|
17 |
-
InferenceClient(models[
|
|
|
18 |
]
|
19 |
|
20 |
-
VERBOSE=False
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def load_models(inp):
|
23 |
-
if VERBOSE==True:
|
24 |
print(type(inp))
|
25 |
print(inp)
|
26 |
print(models[inp])
|
27 |
-
#client_z.clear()
|
28 |
-
#client_z.append(InferenceClient(models[inp]))
|
29 |
return gr.update(label=models[inp])
|
30 |
|
31 |
def format_prompt(message, history, cust_p):
|
@@ -34,75 +39,64 @@ def format_prompt(message, history, cust_p):
|
|
34 |
for user_prompt, bot_response in history:
|
35 |
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
36 |
prompt += f"<start_of_turn>model{bot_response}<end_of_turn></s>"
|
37 |
-
if VERBOSE==True:
|
38 |
print(prompt)
|
39 |
-
|
40 |
-
prompt+=cust_p.replace("USER_INPUT",message)
|
41 |
return prompt
|
42 |
|
43 |
-
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
|
44 |
-
|
45 |
-
|
46 |
-
hist_len=0
|
47 |
-
client=clients[int(client_choice)-1]
|
48 |
if not history:
|
49 |
history = []
|
50 |
-
hist_len=0
|
51 |
if not memory:
|
52 |
memory = []
|
53 |
-
|
54 |
if memory:
|
55 |
-
for ea in memory[0-chat_mem:]:
|
56 |
-
hist_len+=len(str(ea))
|
57 |
-
in_len=len(system_prompt+prompt)+hist_len
|
58 |
|
59 |
-
if (in_len+tokens) > 8000:
|
60 |
-
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
61 |
-
yield history,memory
|
62 |
else:
|
63 |
generate_kwargs = dict(
|
64 |
-
#temperature=temp,
|
65 |
max_new_tokens=tokens,
|
66 |
-
#top_p=top_p,
|
67 |
-
#repetition_penalty=rep_p,
|
68 |
-
#do_sample=True,
|
69 |
-
#seed=seed,
|
70 |
)
|
71 |
if system_prompt:
|
72 |
-
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
|
73 |
else:
|
74 |
-
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
|
75 |
-
|
76 |
-
|
|
|
77 |
chat = [
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
stream = client.text_generation(
|
82 |
output = ""
|
83 |
for response in stream:
|
84 |
output += response.token.text
|
85 |
-
yield [(prompt,output)],memory
|
86 |
-
history.append((prompt,output))
|
87 |
-
memory.append((prompt,output))
|
88 |
-
yield history,memory
|
89 |
-
|
90 |
-
if VERBOSE==True:
|
91 |
-
print("\n######### HIST "+str(in_len))
|
92 |
-
print("\n######### TOKENS "+str(tokens))
|
93 |
|
94 |
def clear_fn():
|
95 |
-
return None,None,None,None
|
96 |
-
rand_val=random.randint(1,1111111111111111)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
else:
|
102 |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
103 |
-
|
104 |
with gr.Blocks() as app:
|
105 |
-
memory=gr.State()
|
106 |
chat_b = gr.Chatbot(height=500)
|
107 |
with gr.Group():
|
108 |
with gr.Row():
|
@@ -114,27 +108,26 @@ with gr.Blocks() as app:
|
|
114 |
btn = gr.Button("Chat")
|
115 |
with gr.Column(scale=1):
|
116 |
with gr.Group():
|
117 |
-
stop_btn=gr.Button("Stop")
|
118 |
-
clear_btn=gr.Button("Clear")
|
119 |
-
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
|
120 |
-
with gr.Accordion("Prompt Format",open=False):
|
121 |
-
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=5,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
|
122 |
with gr.Column(scale=1):
|
123 |
with gr.Group():
|
124 |
rand = gr.Checkbox(label="Random Seed", value=True)
|
125 |
-
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
|
126 |
-
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
|
127 |
-
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
128 |
-
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
129 |
-
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
130 |
-
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
app.queue(default_concurrency_limit=10).launch()
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from deep_translator import GoogleTranslator
|
5 |
import random
|
6 |
+
|
7 |
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
8 |
|
9 |
+
models = [
|
10 |
"google/gemma-7b",
|
11 |
"google/gemma-7b-it",
|
12 |
"google/gemma-2b",
|
13 |
"google/gemma-2b-it"
|
14 |
]
|
15 |
+
|
16 |
+
clients = [
|
17 |
+
InferenceClient(models[0]),
|
18 |
+
InferenceClient(models[1]),
|
19 |
+
InferenceClient(models[2]),
|
20 |
+
InferenceClient(models[3]),
|
21 |
]
|
22 |
|
23 |
+
VERBOSE = False
|
24 |
+
|
25 |
+
def translate_to_english(prompt):
|
26 |
+
translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
|
27 |
+
return translated_prompt
|
28 |
|
29 |
def load_models(inp):
|
30 |
+
if VERBOSE == True:
|
31 |
print(type(inp))
|
32 |
print(inp)
|
33 |
print(models[inp])
|
|
|
|
|
34 |
return gr.update(label=models[inp])
|
35 |
|
36 |
def format_prompt(message, history, cust_p):
|
|
|
39 |
for user_prompt, bot_response in history:
|
40 |
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
41 |
prompt += f"<start_of_turn>model{bot_response}<end_of_turn></s>"
|
42 |
+
if VERBOSE == True:
|
43 |
print(prompt)
|
44 |
+
prompt += cust_p.replace("USER_INPUT", message)
|
|
|
45 |
return prompt
|
46 |
|
47 |
+
def chat_inf(system_prompt, prompt, history, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p):
|
48 |
+
hist_len = 0
|
49 |
+
client = clients[int(client_choice) - 1]
|
|
|
|
|
50 |
if not history:
|
51 |
history = []
|
|
|
52 |
if not memory:
|
53 |
memory = []
|
54 |
+
|
55 |
if memory:
|
56 |
+
for ea in memory[0 - chat_mem:]:
|
57 |
+
hist_len += len(str(ea))
|
58 |
+
in_len = len(system_prompt + prompt) + hist_len
|
59 |
|
60 |
+
if (in_len + tokens) > 8000:
|
61 |
+
history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
62 |
+
yield history, memory
|
63 |
else:
|
64 |
generate_kwargs = dict(
|
|
|
65 |
max_new_tokens=tokens,
|
|
|
|
|
|
|
|
|
66 |
)
|
67 |
if system_prompt:
|
68 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], cust_p)
|
69 |
else:
|
70 |
+
formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], cust_p)
|
71 |
+
|
72 |
+
translated_prompt = translate_to_english(formatted_prompt)
|
73 |
+
|
74 |
chat = [
|
75 |
+
{"role": "user", "content": f"{translated_prompt}"},
|
76 |
+
]
|
77 |
|
78 |
+
stream = client.text_generation(translated_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
79 |
output = ""
|
80 |
for response in stream:
|
81 |
output += response.token.text
|
82 |
+
yield [(prompt, output)], memory
|
83 |
+
history.append((prompt, output))
|
84 |
+
memory.append((prompt, output))
|
85 |
+
yield history, memory
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def clear_fn():
|
88 |
+
return None, None, None, None
|
|
|
89 |
|
90 |
+
rand_val = random.randint(1, 1111111111111111)
|
91 |
+
|
92 |
+
def check_rand(inp, val):
|
93 |
+
if inp == True:
|
94 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
95 |
else:
|
96 |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
97 |
+
|
98 |
with gr.Blocks() as app:
|
99 |
+
memory = gr.State()
|
100 |
chat_b = gr.Chatbot(height=500)
|
101 |
with gr.Group():
|
102 |
with gr.Row():
|
|
|
108 |
btn = gr.Button("Chat")
|
109 |
with gr.Column(scale=1):
|
110 |
with gr.Group():
|
111 |
+
stop_btn = gr.Button("Stop")
|
112 |
+
clear_btn = gr.Button("Clear")
|
113 |
+
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0], interactive=True)
|
114 |
+
with gr.Accordion("Prompt Format", open=False):
|
115 |
+
custom_prompt = gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=5, value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
|
116 |
with gr.Column(scale=1):
|
117 |
with gr.Group():
|
118 |
rand = gr.Checkbox(label="Random Seed", value=True)
|
119 |
+
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
|
120 |
+
tokens = gr.Slider(label="Max new tokens", value=1600, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
|
121 |
+
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
122 |
+
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
123 |
+
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
124 |
+
chat_mem = gr.Number(label="Chat Memory", info="Number of previous chats to retain", value=4)
|
125 |
+
|
126 |
+
client_choice.change(load_models, client_choice, [chat_b])
|
127 |
+
app.load(load_models, client_choice, [chat_b])
|
128 |
+
|
129 |
+
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], [chat_b, memory])
|
130 |
+
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], [chat_b, memory])
|
131 |
+
|
132 |
+
clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b, memory])
|
133 |
+
app.queue(default_concurrency_limit=10).launch()
|
|