Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
from huggingface_hub import InferenceClient
|
4 |
-
from deep_translator import GoogleTranslator
|
5 |
import random
|
6 |
-
|
7 |
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
8 |
|
9 |
-
models
|
10 |
"google/gemma-7b",
|
11 |
"google/gemma-7b-it",
|
12 |
"google/gemma-2b",
|
13 |
"google/gemma-2b-it"
|
14 |
]
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
InferenceClient(models[3]),
|
21 |
]
|
22 |
|
23 |
-
VERBOSE
|
24 |
-
|
25 |
-
def translate_to_english(prompt):
|
26 |
-
translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
|
27 |
-
return translated_prompt
|
28 |
-
|
29 |
-
def translate_to_persian_text(response):
|
30 |
-
translated_response = GoogleTranslator(source='auto', target='fa').translate(response)
|
31 |
-
return translated_response
|
32 |
|
33 |
def load_models(inp):
|
34 |
-
if VERBOSE
|
35 |
print(type(inp))
|
36 |
print(inp)
|
37 |
print(models[inp])
|
|
|
|
|
38 |
return gr.update(label=models[inp])
|
39 |
|
40 |
def format_prompt(message, history, cust_p):
|
@@ -43,69 +35,81 @@ def format_prompt(message, history, cust_p):
|
|
43 |
for user_prompt, bot_response in history:
|
44 |
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
45 |
prompt += f"<start_of_turn>model{bot_response}<end_of_turn></s>"
|
46 |
-
if VERBOSE
|
47 |
print(prompt)
|
48 |
-
prompt +=
|
|
|
49 |
return prompt
|
50 |
|
51 |
-
def chat_inf(system_prompt,
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if not history:
|
55 |
history = []
|
|
|
56 |
if not memory:
|
57 |
memory = []
|
58 |
-
|
59 |
if memory:
|
60 |
-
for ea in memory[0
|
61 |
-
hist_len
|
62 |
-
in_len
|
63 |
|
64 |
-
if (in_len
|
65 |
-
history.append((prompt,
|
66 |
-
yield history,
|
67 |
else:
|
68 |
generate_kwargs = dict(
|
|
|
69 |
max_new_tokens=tokens,
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
if system_prompt:
|
72 |
-
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0
|
73 |
else:
|
74 |
-
formatted_prompt = format_prompt(prompt, memory[0
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
chat = [
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
stream = client.text_generation(
|
83 |
output = ""
|
84 |
for response in stream:
|
85 |
output += response.token.text
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
history
|
90 |
-
|
91 |
-
|
|
|
|
|
92 |
|
93 |
def clear_fn():
|
94 |
-
return None,
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
if inp == True:
|
100 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
101 |
else:
|
102 |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
103 |
-
|
104 |
-
def chat_wrapper(sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox):
|
105 |
-
return chat_inf(sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt, translate_to_persian_checkbox)
|
106 |
-
|
107 |
with gr.Blocks() as app:
|
108 |
-
memory
|
109 |
chat_b = gr.Chatbot(height=500)
|
110 |
with gr.Group():
|
111 |
with gr.Row():
|
@@ -117,27 +121,27 @@ with gr.Blocks() as app:
|
|
117 |
btn = gr.Button("Chat")
|
118 |
with gr.Column(scale=1):
|
119 |
with gr.Group():
|
120 |
-
stop_btn
|
121 |
-
clear_btn
|
122 |
-
client_choice
|
123 |
-
with gr.Accordion("Prompt Format",
|
124 |
-
custom_prompt
|
125 |
with gr.Column(scale=1):
|
126 |
with gr.Group():
|
127 |
-
translate_to_persian_checkbox = gr.Checkbox(label="Translate to Persian", value=True)
|
128 |
rand = gr.Checkbox(label="Random Seed", value=True)
|
129 |
-
seed
|
130 |
-
tokens = gr.Slider(label="Max new tokens",
|
131 |
-
temp
|
132 |
-
top_p
|
133 |
-
rep_p
|
134 |
-
chat_mem
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
from huggingface_hub import InferenceClient
|
|
|
4 |
import random
|
5 |
+
from deep_translator import GoogleTranslator
|
6 |
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
7 |
|
8 |
+
models=[
|
9 |
"google/gemma-7b",
|
10 |
"google/gemma-7b-it",
|
11 |
"google/gemma-2b",
|
12 |
"google/gemma-2b-it"
|
13 |
]
|
14 |
+
clients=[
|
15 |
+
InferenceClient(models[0]),
|
16 |
+
InferenceClient(models[1]),
|
17 |
+
InferenceClient(models[2]),
|
18 |
+
InferenceClient(models[3]),
|
|
|
19 |
]
|
20 |
|
21 |
+
VERBOSE=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def load_models(inp):
|
24 |
+
if VERBOSE==True:
|
25 |
print(type(inp))
|
26 |
print(inp)
|
27 |
print(models[inp])
|
28 |
+
#client_z.clear()
|
29 |
+
#client_z.append(InferenceClient(models[inp]))
|
30 |
return gr.update(label=models[inp])
|
31 |
|
32 |
def format_prompt(message, history, cust_p):
|
|
|
35 |
for user_prompt, bot_response in history:
|
36 |
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
37 |
prompt += f"<start_of_turn>model{bot_response}<end_of_turn></s>"
|
38 |
+
if VERBOSE==True:
|
39 |
print(prompt)
|
40 |
+
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
41 |
+
prompt+=cust_p.replace("USER_INPUT",message)
|
42 |
return prompt
|
43 |
|
44 |
+
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
|
45 |
+
#token max=8192
|
46 |
+
if(len(prompt) > 2000):
|
47 |
+
translatedtext1 = GoogleTranslator(source='auto', target='en').translate(prompt[0:2000])
|
48 |
+
translatedtext2 = GoogleTranslator(source='auto', target='en').translate(prompt[2000:(len(prompt))])
|
49 |
+
prompt = translatedtext1 + translatedtext2
|
50 |
+
else:
|
51 |
+
prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
|
52 |
+
print(client_choice)
|
53 |
+
hist_len=0
|
54 |
+
client=clients[int(client_choice)-1]
|
55 |
if not history:
|
56 |
history = []
|
57 |
+
hist_len=0
|
58 |
if not memory:
|
59 |
memory = []
|
60 |
+
mem_len=0
|
61 |
if memory:
|
62 |
+
for ea in memory[0-chat_mem:]:
|
63 |
+
hist_len+=len(str(ea))
|
64 |
+
in_len=len(system_prompt+prompt)+hist_len
|
65 |
|
66 |
+
if (in_len+tokens) > 8000:
|
67 |
+
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
68 |
+
yield history,memory
|
69 |
else:
|
70 |
generate_kwargs = dict(
|
71 |
+
#temperature=temp,
|
72 |
max_new_tokens=tokens,
|
73 |
+
#top_p=top_p,
|
74 |
+
#repetition_penalty=rep_p,
|
75 |
+
#do_sample=True,
|
76 |
+
#seed=seed,
|
77 |
)
|
78 |
if system_prompt:
|
79 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
|
80 |
else:
|
81 |
+
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
|
82 |
+
|
83 |
+
|
|
|
84 |
chat = [
|
85 |
+
{ "role": "user", "content": f"{formatted_prompt}" },
|
86 |
+
]
|
87 |
|
88 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
89 |
output = ""
|
90 |
for response in stream:
|
91 |
output += response.token.text
|
92 |
+
yield [(prompt,output)],memory
|
93 |
+
history.append((prompt,output))
|
94 |
+
memory.append((prompt,output))
|
95 |
+
yield history,memory
|
96 |
+
|
97 |
+
if VERBOSE==True:
|
98 |
+
print("\n######### HIST "+str(in_len))
|
99 |
+
print("\n######### TOKENS "+str(tokens))
|
100 |
|
101 |
def clear_fn():
|
102 |
+
return None,None,None,None
|
103 |
+
rand_val=random.randint(1,1111111111111111)
|
104 |
|
105 |
+
def check_rand(inp,val):
|
106 |
+
if inp==True:
|
107 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
|
|
|
|
|
108 |
else:
|
109 |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
110 |
+
|
|
|
|
|
|
|
111 |
with gr.Blocks() as app:
|
112 |
+
memory=gr.State()
|
113 |
chat_b = gr.Chatbot(height=500)
|
114 |
with gr.Group():
|
115 |
with gr.Row():
|
|
|
121 |
btn = gr.Button("Chat")
|
122 |
with gr.Column(scale=1):
|
123 |
with gr.Group():
|
124 |
+
stop_btn=gr.Button("Stop")
|
125 |
+
clear_btn=gr.Button("Clear")
|
126 |
+
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
|
127 |
+
with gr.Accordion("Prompt Format",open=False):
|
128 |
+
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=5,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
|
129 |
with gr.Column(scale=1):
|
130 |
with gr.Group():
|
|
|
131 |
rand = gr.Checkbox(label="Random Seed", value=True)
|
132 |
+
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
|
133 |
+
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
|
134 |
+
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
135 |
+
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
136 |
+
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
137 |
+
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
|
138 |
+
|
139 |
+
|
140 |
+
client_choice.change(load_models,client_choice,[chat_b])
|
141 |
+
app.load(load_models,client_choice,[chat_b])
|
142 |
+
|
143 |
+
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
|
144 |
+
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
|
145 |
+
|
146 |
+
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
|
147 |
+
app.queue(default_concurrency_limit=10).launch()
|