Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -4,11 +4,7 @@ import pandas as pd 
     | 
|
| 4 | 
         | 
| 5 | 
         
             
            from transformers import pipeline
         
     | 
| 6 | 
         | 
| 7 | 
         
            -
            # model_name="aminghias/distilbert-base-uncased-finetuned-imdb"
         
     | 
| 8 | 
         | 
| 9 | 
         
            -
            # mask_filler = pipeline(
         
     | 
| 10 | 
         
            -
            #     "fill-mask", model=model_name
         
     | 
| 11 | 
         
            -
            # )
         
     | 
| 12 | 
         | 
| 13 | 
         
             
            pipe = pipeline("fill-mask", model="aminghias/Clinical-BERT-finetuned")
         
     | 
| 14 | 
         
             
            pipe2 = pipeline("fill-mask", model="emilyalsentzer/Bio_ClinicalBERT")
         
     | 
| 
         @@ -16,8 +12,6 @@ pipe3= pipeline("fill-mask", model="medicalai/ClinicalBERT") 
     | 
|
| 16 | 
         | 
| 17 | 
         | 
| 18 | 
         | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
             
            def predict(text):
         
     | 
| 22 | 
         | 
| 23 | 
         
             
                pred1 = pipe(text)
         
     | 
| 
         @@ -48,36 +42,27 @@ def predict(text): 
     | 
|
| 48 | 
         | 
| 49 | 
         
             
                df_join=df_join.sort_values(by='score_average',ascending=False)
         
     | 
| 50 | 
         
             
                df_join=df_join.reset_index(drop=True)
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                # df_join=df_join.fillna(0)
         
     | 
| 53 | 
         
             
                df=df_join.copy()
         
     | 
| 54 | 
         
             
                df_join=df_join[['token_str','score_average','score_finetuned_CBERT','score_Bio_CBERT','score_CBERT']].head()
         
     | 
| 55 | 
         | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
                
         
     | 
| 58 | 
         
            -
                # print(df_join)
         
     | 
| 59 | 
         
            -
                # df_join['sum_sequence'][0]
         
     | 
| 60 | 
         
             
                return (df['sum_sequence'][0],df_join)
         
     | 
| 61 | 
         | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
              # return (pipe(text)[0]['sequence'],pipe2(text)[0]['sequence'])
         
     | 
| 64 | 
         | 
| 65 | 
         
             
            demo = gr.Interface(
         
     | 
| 66 | 
         
             
              fn=predict, 
         
     | 
| 67 | 
         
             
              inputs='text',
         
     | 
| 68 | 
         
             
              # outputs='text',
         
     | 
| 69 | 
         
             
              outputs=['text', gr.Dataframe()],
         
     | 
| 70 | 
         
            -
                # outputs='text','text',
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                 # outputs=gr.Dataframe(headers=['title', 'author', 'text']), allow_flagging='never')
         
     | 
| 73 | 
         | 
| 74 | 
         
             
              title="Filling Missing Clinical/Medical Data ",
         
     | 
| 75 | 
         
             
                examples=[ ['The  high blood pressure was due to [MASK]  which is critical.'],
         
     | 
| 76 | 
         
             
                          ['The  patient is suffering from throat infection causing [MASK] and cough.']
         
     | 
| 77 | 
         
             
                         ],
         
     | 
| 78 | 
         
             
                description="This application fills any missing words in the medical domain",
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
             # fn = infer, inputs = inputs, outputs = outputs, examples = [[df_join.head()]]
         
     | 
| 81 | 
         
             
            )
         
     | 
| 82 | 
         | 
| 83 | 
         
             
            demo.launch()
         
     | 
| 
         | 
|
| 4 | 
         | 
| 5 | 
         
             
            from transformers import pipeline
         
     | 
| 6 | 
         | 
| 
         | 
|
| 7 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 8 | 
         | 
| 9 | 
         
             
            pipe = pipeline("fill-mask", model="aminghias/Clinical-BERT-finetuned")
         
     | 
| 10 | 
         
             
            pipe2 = pipeline("fill-mask", model="emilyalsentzer/Bio_ClinicalBERT")
         
     | 
| 
         | 
|
| 12 | 
         | 
| 13 | 
         | 
| 14 | 
         | 
| 
         | 
|
| 
         | 
|
| 15 | 
         
             
            def predict(text):
         
     | 
| 16 | 
         | 
| 17 | 
         
             
                pred1 = pipe(text)
         
     | 
| 
         | 
|
| 42 | 
         | 
| 43 | 
         
             
                df_join=df_join.sort_values(by='score_average',ascending=False)
         
     | 
| 44 | 
         
             
                df_join=df_join.reset_index(drop=True)
         
     | 
| 45 | 
         
            +
             
     | 
| 
         | 
|
| 46 | 
         
             
                df=df_join.copy()
         
     | 
| 47 | 
         
             
                df_join=df_join[['token_str','score_average','score_finetuned_CBERT','score_Bio_CBERT','score_CBERT']].head()
         
     | 
| 48 | 
         | 
| 49 | 
         
            +
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 50 | 
         
             
                return (df['sum_sequence'][0],df_join)
         
     | 
| 51 | 
         | 
| 52 | 
         
            +
             
     | 
| 
         | 
|
| 53 | 
         | 
| 54 | 
         
             
            demo = gr.Interface(
         
     | 
| 55 | 
         
             
              fn=predict, 
         
     | 
| 56 | 
         
             
              inputs='text',
         
     | 
| 57 | 
         
             
              # outputs='text',
         
     | 
| 58 | 
         
             
              outputs=['text', gr.Dataframe()],
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 59 | 
         | 
| 60 | 
         
             
              title="Filling Missing Clinical/Medical Data ",
         
     | 
| 61 | 
         
             
                examples=[ ['The  high blood pressure was due to [MASK]  which is critical.'],
         
     | 
| 62 | 
         
             
                          ['The  patient is suffering from throat infection causing [MASK] and cough.']
         
     | 
| 63 | 
         
             
                         ],
         
     | 
| 64 | 
         
             
                description="This application fills any missing words in the medical domain",
         
     | 
| 65 | 
         
            +
             
     | 
| 
         | 
|
| 66 | 
         
             
            )
         
     | 
| 67 | 
         | 
| 68 | 
         
             
            demo.launch()
         
     |