Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,62 @@
|
|
1 |
import streamlit as st
|
2 |
from paddleocr import PaddleOCR, draw_ocr
|
3 |
-
from PIL import Image
|
4 |
import numpy as np
|
5 |
from langdetect import detect
|
6 |
-
import
|
7 |
|
8 |
-
#
|
9 |
-
ocr = PaddleOCR(lang='
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
image = Image.open(
|
16 |
-
|
17 |
-
|
18 |
-
# OCR and Display
|
19 |
-
st.write("Processing...")
|
20 |
-
result = ocr.ocr(np.array(image), cls=True)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
texts = [res[1][0] for res in result[0]]
|
25 |
-
scores = [res[1][1] for res in result[0]]
|
26 |
|
27 |
-
#
|
28 |
-
detected_text = " ".join(
|
29 |
-
st.write("Detected Text")
|
30 |
-
st.write(detected_text)
|
31 |
|
32 |
-
# Language detection
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Font setup
|
37 |
-
font_path = "/content/drive/MyDrive/Colab Notebooks/NOORIN59.TTF" # Update with an Urdu-compatible font if possible
|
38 |
-
if not os.path.exists(font_path):
|
39 |
-
st.write("Font file not found. Using default.")
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
46 |
|
|
|
1 |
import streamlit as st
|
2 |
from paddleocr import PaddleOCR, draw_ocr
|
3 |
+
from PIL import Image
|
4 |
import numpy as np
|
5 |
from langdetect import detect
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
+
# Initialize PaddleOCR for multilingual text recognition
|
9 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en') # For language options, use 'ch' for Chinese, etc.
|
10 |
|
11 |
+
# Load summarization model
|
12 |
+
summarizer = pipeline("summarization")
|
13 |
+
|
14 |
+
def recognize_text(image_path):
|
15 |
+
image = Image.open(image_path)
|
16 |
+
img_array = np.array(image)
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# OCR processing
|
19 |
+
ocr_results = ocr.ocr(img_array, cls=True)
|
|
|
|
|
20 |
|
21 |
+
# Extracting text from OCR results
|
22 |
+
detected_text = " ".join([line[1][0] for line in ocr_results[0]])
|
|
|
|
|
23 |
|
24 |
+
# Language detection and summarization
|
25 |
+
language = detect(detected_text)
|
26 |
+
summary = summarizer(detected_text, max_length=50, min_length=25, do_sample=False)[0]['summary_text']
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
return detected_text, language, summary
|
29 |
+
|
30 |
+
def display_ocr_results(image, ocr_results):
|
31 |
+
boxes = [line[0] for line in ocr_results[0]]
|
32 |
+
texts = [line[1][0] for line in ocr_results[0]]
|
33 |
+
scores = [line[1][1] for line in ocr_results[0]]
|
34 |
+
return draw_ocr(np.array(image), boxes, texts, scores, font_path='path_to_font.ttf')
|
35 |
+
|
36 |
+
# Streamlit Interface
|
37 |
+
st.title("Multilingual OCR and Text Summarization App")
|
38 |
+
st.write("Upload an image or capture one to get OCR results and text summary")
|
39 |
+
|
40 |
+
# Image Upload or Capture
|
41 |
+
image_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
42 |
+
|
43 |
+
if image_file is not None:
|
44 |
+
with open("uploaded_image.png", "wb") as f:
|
45 |
+
f.write(image_file.getbuffer())
|
46 |
+
st.success("Image uploaded successfully!")
|
47 |
+
image = Image.open("uploaded_image.png")
|
48 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
49 |
+
|
50 |
+
# Perform OCR and display results
|
51 |
+
detected_text, language, summary = recognize_text("uploaded_image.png")
|
52 |
+
st.write("### Detected Text")
|
53 |
+
st.write(detected_text)
|
54 |
+
st.write("### Detected Language")
|
55 |
+
st.write(language)
|
56 |
+
st.write("### Text Summary")
|
57 |
+
st.write(summary)
|
58 |
|
59 |
+
# Display OCR visualization
|
60 |
+
visualized_image = display_ocr_results(image, ocr.ocr(np.array(image), cls=True))
|
61 |
+
st.image(visualized_image, caption="OCR Results Visualization", use_column_width=True)
|
62 |
|