Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,6 @@ import os
|
|
| 3 |
from transformers import pipeline
|
| 4 |
from langdetect import detect
|
| 5 |
from groq import Groq
|
| 6 |
-
import torch
|
| 7 |
-
print(torch.__version__)
|
| 8 |
-
print("CUDA available:", torch.cuda.is_available()) # Check if GPU is available
|
| 9 |
|
| 10 |
# Load Hugging Face token from environment
|
| 11 |
HF_TOKEN = os.environ.get("homeo_doc")
|
|
@@ -15,9 +12,6 @@ if not HF_TOKEN:
|
|
| 15 |
# Initialize translation pipeline
|
| 16 |
translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", token=HF_TOKEN)
|
| 17 |
|
| 18 |
-
# Initialize Groq client for homeopathic advice
|
| 19 |
-
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 20 |
-
|
| 21 |
# Language code mapping for NLLB-200
|
| 22 |
LANG_CODE_MAP = {
|
| 23 |
'en': 'eng_Latn', # English
|
|
@@ -32,68 +26,22 @@ def translate_text(text, target_lang='eng_Latn'):
|
|
| 32 |
"""Translate text using NLLB-200"""
|
| 33 |
try:
|
| 34 |
source_lang = detect(text)
|
| 35 |
-
source_code = LANG_CODE_MAP.get(source_lang, 'eng_Latn')
|
| 36 |
-
translation = translator(text)[0]['translation_text']
|
| 37 |
-
return translation
|
| 38 |
-
except Exception as e:
|
| 39 |
-
st.error(f"Translation error: {str(e)}")
|
| 40 |
-
return text
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
model="llama3-70b-8192",
|
| 47 |
-
messages=[{
|
| 48 |
-
"role": "user",
|
| 49 |
-
"content": f"Act as a homeopathic expert. Suggest remedies for: {symptoms}"
|
| 50 |
-
}],
|
| 51 |
-
temperature=0.3
|
| 52 |
)
|
| 53 |
-
return response.choices[0].message.content
|
| 54 |
-
except Exception as e:
|
| 55 |
-
return f"Error: {str(e)}"
|
| 56 |
-
|
| 57 |
-
# Streamlit UI
|
| 58 |
-
st.set_page_config(page_title="Homeo Advisor", page_icon="🌿")
|
| 59 |
-
st.title("🌍 Multilingual Homeopathic Advisor")
|
| 60 |
-
|
| 61 |
-
# Chat interface
|
| 62 |
-
if "messages" not in st.session_state:
|
| 63 |
-
st.session_state.messages = []
|
| 64 |
-
|
| 65 |
-
for message in st.session_state.messages:
|
| 66 |
-
with st.chat_message(message["role"]):
|
| 67 |
-
st.markdown(message["content"])
|
| 68 |
-
|
| 69 |
-
if prompt := st.chat_input("Describe symptoms in any language"):
|
| 70 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 71 |
-
|
| 72 |
-
# Process input
|
| 73 |
-
with st.spinner("Analyzing..."):
|
| 74 |
-
# Translate input to English
|
| 75 |
-
english_input = translate_text(prompt)
|
| 76 |
-
|
| 77 |
-
# Get medical advice
|
| 78 |
-
english_advice = get_homeopathic_advice(english_input)
|
| 79 |
-
|
| 80 |
-
# Translate back to original language
|
| 81 |
-
source_lang = detect(prompt)
|
| 82 |
-
translated_advice = translate_text(english_advice)
|
| 83 |
-
|
| 84 |
-
# Format response
|
| 85 |
-
final_response = f"""
|
| 86 |
-
**English Recommendation:**
|
| 87 |
-
{english_advice}
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
with st.chat_message("assistant"):
|
| 95 |
-
st.markdown(final_response)
|
| 96 |
-
st.session_state.messages.append({"role": "assistant", "content": final_response})
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
from langdetect import detect
|
| 5 |
from groq import Groq
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Load Hugging Face token from environment
|
| 8 |
HF_TOKEN = os.environ.get("homeo_doc")
|
|
|
|
| 12 |
# Initialize translation pipeline
|
| 13 |
translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", token=HF_TOKEN)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Language code mapping for NLLB-200
|
| 16 |
LANG_CODE_MAP = {
|
| 17 |
'en': 'eng_Latn', # English
|
|
|
|
| 26 |
"""Translate text using NLLB-200"""
|
| 27 |
try:
|
| 28 |
source_lang = detect(text)
|
| 29 |
+
source_code = LANG_CODE_MAP.get(source_lang, 'eng_Latn') # Detect source language
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
translation = translator(
|
| 32 |
+
text,
|
| 33 |
+
src_lang=source_code, # Pass source language
|
| 34 |
+
tgt_lang=target_lang # Pass target language
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
return translation[0]['translation_text']
|
| 38 |
+
|
| 39 |
+
except Exception as e:
|
| 40 |
+
st.error(f"Translation error: {str(e)}")
|
| 41 |
+
return text
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Test function
|
| 44 |
+
if __name__ == "__main__":
|
| 45 |
+
test_text = "یہ ایک آزمائشی جملہ ہے۔" # Urdu sample text
|
| 46 |
+
translated = translate_text(test_text, "eng_Latn")
|
| 47 |
+
print("Translated:", translated)
|