Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import torch | |
| import torchaudio | |
| from einops import rearrange | |
| import gradio as gr | |
| import spaces | |
| import os | |
| import uuid | |
| # Importing the model-related functions | |
| from stable_audio_tools import get_pretrained_model | |
| from stable_audio_tools.inference.generation import generate_diffusion_cond | |
| PAGE_SIZE = 10 | |
| FILE_DIR_PATH = "/data" | |
| theme = gr.themes.Base( | |
| font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
| ) | |
| # Load the model outside of the GPU-decorated function | |
| def load_model(): | |
| model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") | |
| print("Loading model...Done") | |
| return model, model_config | |
| # Function to set up, generate, and process the audio | |
| # Allocate GPU only when this function is called | |
| def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500, progress=gr.Progress(track_tqdm=True)): | |
| print(f"Prompt received: {prompt}") | |
| print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"Using device: {device}") | |
| # Fetch the Hugging Face token from the environment variable | |
| hf_token = os.getenv('HF_TOKEN') | |
| print(f"Hugging Face token: {hf_token}") | |
| # Use pre-loaded model and configuration | |
| model, model_config = load_model() | |
| sample_rate = model_config["sample_rate"] | |
| sample_size = model_config["sample_size"] | |
| print(f"Sample rate: {sample_rate}, Sample size: {sample_size}") | |
| model = model.to(device) | |
| print("Model moved to device.") | |
| # Set up text and timing conditioning | |
| conditioning = [{ | |
| "prompt": prompt, | |
| "seconds_start": 0, | |
| "seconds_total": seconds_total | |
| }] | |
| print(f"Conditioning: {conditioning}") | |
| # Generate stereo audio | |
| print("Generating audio...") | |
| output = generate_diffusion_cond( | |
| model, | |
| steps=steps, | |
| cfg_scale=cfg_scale, | |
| conditioning=conditioning, | |
| sample_size=sample_size, | |
| sigma_min=sigma_min_slider, | |
| sigma_max=sigma_max_slider, | |
| sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde", | |
| device=device | |
| ) | |
| print("Audio generated.") | |
| # Rearrange audio batch to a single sequence | |
| output = rearrange(output, "b d n -> d (b n)") | |
| print("Audio rearranged.") | |
| # Peak normalize, clip, convert to int16 | |
| output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
| max_length = sample_rate * seconds_total | |
| if output.shape[1] > max_length: | |
| output = output[:, :max_length] | |
| print(f"Audio trimmed to {seconds_total} seconds.") | |
| # Generate a unique filename for the output | |
| random_uuid = uuid.uuid4().hex | |
| unique_filename = f"/data/output_{random_uuid}.wav" | |
| unique_textfile = f"/data/output_{random_uuid}.txt" | |
| print(f"Saving audio to file: {unique_filename}") | |
| # Save to file | |
| torchaudio.save(unique_filename, output, sample_rate) | |
| print(f"Audio saved: {unique_filename}") | |
| with open(unique_textfile, "w") as file: | |
| file.write(prompt) | |
| # Return the path to the generated audio file | |
| return unique_filename | |
| def list_all_outputs(generation_history): | |
| directory_path = FILE_DIR_PATH | |
| files_in_directory = os.listdir(directory_path) | |
| wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.wav')] | |
| wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True) | |
| history_list = generation_history.split(',') if generation_history else [] | |
| updated_files = [file for file in wav_files if file not in history_list] | |
| updated_history = updated_files + history_list | |
| return ','.join(updated_history), gr.update(visible=True) | |
| def increase_list_size(list_size): | |
| return list_size+PAGE_SIZE | |
| css = ''' | |
| #live_gen:before { | |
| content: ''; | |
| animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite; | |
| border: 2px solid var(--color-accent); | |
| background: transparent; | |
| z-index: var(--layer-1); | |
| pointer-events: none; | |
| position: absolute; | |
| height: 100%; | |
| width: 100%; | |
| border-radius: 7px; | |
| } | |
| #live_gen_items{ | |
| max-height: 570px; | |
| overflow-y: scroll; | |
| } | |
| ''' | |
| examples = [ | |
| [ | |
| "A serene soundscape of a quiet beach at sunset.", # Text prompt | |
| "dpmpp-2m-sde", # Sampler type | |
| 45, # Duration in Seconds | |
| 100, # Number of Diffusion Steps | |
| 10, # CFG Scale | |
| 0.5, # Sigma min | |
| 800 # Sigma max | |
| ], | |
| [ | |
| "clapping crowd", # Text prompt | |
| "dpmpp-3m-sde", # Sampler type | |
| 30, # Duration in Seconds | |
| 100, # Number of Diffusion Steps | |
| 7, # CFG Scale | |
| 0.5, # Sigma min | |
| 500 # Sigma max | |
| ], | |
| [ | |
| "A forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt | |
| "k-dpm-fast", # Sampler type | |
| 60, # Duration in Seconds | |
| 140, # Number of Diffusion Steps | |
| 7.5, # CFG Scale | |
| 0.3, # Sigma min | |
| 700 # Sigma max | |
| ], | |
| [ | |
| "A gentle rainfall with distant thunder.", # Text prompt | |
| "dpmpp-3m-sde", # Sampler type | |
| 35, # Duration in Seconds | |
| 110, # Number of Diffusion Steps | |
| 8, # CFG Scale | |
| 0.1, # Sigma min | |
| 500 # Sigma max | |
| ], | |
| [ | |
| "A jazz cafe environment with soft music and ambient chatter.", # Text prompt | |
| "k-lms", # Sampler type | |
| 25, # Duration in Seconds | |
| 90, # Number of Diffusion Steps | |
| 6, # CFG Scale | |
| 0.4, # Sigma min | |
| 650 # Sigma max | |
| ], | |
| ["Rock beat played in a treated studio, session drumming on an acoustic kit.", | |
| "dpmpp-2m-sde", # Sampler type | |
| 30, # Duration in Seconds | |
| 100, # Number of Diffusion Steps | |
| 7, # CFG Scale | |
| 0.3, # Sigma min | |
| 500 # Sigma max | |
| ] | |
| ] | |
| with gr.Blocks(theme=theme, css=css) as demo: | |
| gr.Markdown("# Stable Audio Multiplayer Live") | |
| gr.Markdown("Generate audio with text, share and learn from others how to best prompt this new model") | |
| generation_history = gr.Textbox(visible=False) | |
| list_size = gr.Number(value=PAGE_SIZE, visible=False) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") | |
| btn_run = gr.Button("Generate") | |
| with gr.Accordion("Parameters", open=True): | |
| with gr.Row(): | |
| duration = gr.Slider(0, 47, value=20, step=1, label="Duration in Seconds") | |
| with gr.Accordion("Advanced parameters", open=False): | |
| steps = gr.Slider(10, 150, value=80, step=10, label="Number of Diffusion Steps") | |
| sampler_type = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", | |
| "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], | |
| label="Sampler type", value="dpmpp-3m-sde") | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale") | |
| sigma_min = gr.Slider(0.0, 5.0, step=0.01, value=0.3, label="Sigma min") | |
| sigma_max = gr.Slider(0.0, 1000.0, step=0.1, value=500, label="Sigma max") | |
| with gr.Column() as output_list: | |
| output = gr.Audio(type="filepath", label="Generated Audio") | |
| with gr.Column(elem_id="live_gen") as community_list: | |
| gr.Markdown("# Community generations") | |
| with gr.Column(elem_id="live_gen_items"): | |
| def show_output_list(generation_history, list_size): | |
| history_list = generation_history.split(',') if generation_history else [] | |
| history_list_latest = history_list[:list_size] | |
| for generation in history_list_latest: | |
| generation_prompt_file = generation.replace('.wav', '.txt') | |
| with open(generation_prompt_file, 'r') as file: | |
| generation_prompt = file.read() | |
| with gr.Group(): | |
| gr.Markdown(value=f"### {generation_prompt}") | |
| gr.Audio(value=generation) | |
| load_more = gr.Button("Load more") | |
| load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size) | |
| gr.Examples( | |
| fn=generate_audio, | |
| examples=examples, | |
| inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max], | |
| outputs=output, | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[btn_run.click, prompt.submit], | |
| fn=generate_audio, | |
| inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max], | |
| outputs=output | |
| ) | |
| demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2) | |
| model, model_config = load_model() | |
| demo.launch() | 

