Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
from ultralytics import YOLO
|
7 |
+
|
8 |
+
def stream_object_detection(video_path, conf_threshold):
|
9 |
+
# Load the YOLO model
|
10 |
+
model = YOLO("weights/best.pt")
|
11 |
+
cap = cv2.VideoCapture(video_path)
|
12 |
+
|
13 |
+
# Get video properties
|
14 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
15 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH) // 2)
|
16 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) // 2)
|
17 |
+
|
18 |
+
# Temporary file for processed video
|
19 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
20 |
+
temp_file_path = temp_file.name
|
21 |
+
|
22 |
+
# VideoWriter to save processed frames
|
23 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
24 |
+
out = cv2.VideoWriter(temp_file_path, fourcc, fps, (width, height))
|
25 |
+
|
26 |
+
while cap.isOpened():
|
27 |
+
ret, frame = cap.read()
|
28 |
+
if not ret:
|
29 |
+
break
|
30 |
+
frame = cv2.resize(frame, (width, height))
|
31 |
+
|
32 |
+
# Run YOLO predictions
|
33 |
+
results = model.predict(frame)
|
34 |
+
|
35 |
+
# Annotate frame with detection results
|
36 |
+
annotated_frame = results[0].plot()
|
37 |
+
|
38 |
+
# Write annotated frame to the video file
|
39 |
+
out.write(annotated_frame)
|
40 |
+
|
41 |
+
cap.release()
|
42 |
+
out.release()
|
43 |
+
|
44 |
+
return temp_file_path
|
45 |
+
|
46 |
+
with gr.Blocks() as app:
|
47 |
+
with gr.Row():
|
48 |
+
with gr.Column():
|
49 |
+
video_input = gr.Video(label="Upload Video")
|
50 |
+
conf_threshold = gr.Slider(
|
51 |
+
label="Confidence Threshold",
|
52 |
+
minimum=0.0,
|
53 |
+
maximum=1.0,
|
54 |
+
step=0.05,
|
55 |
+
value=0.30,
|
56 |
+
)
|
57 |
+
with gr.Column():
|
58 |
+
video_output = gr.Video(label="Processed Video")
|
59 |
+
with gr.Row():
|
60 |
+
|
61 |
+
with gr.Column():
|
62 |
+
detect_button = gr.Button("Start Detection", variant="primary")
|
63 |
+
detect_button.click(
|
64 |
+
fn=stream_object_detection,
|
65 |
+
inputs=[video_input, conf_threshold],
|
66 |
+
outputs=video_output,
|
67 |
+
)
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
app.launch()
|
71 |
+
|