ameerazam08 commited on
Commit
326a259
·
verified ·
1 Parent(s): fad8550

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +9 -130
README.md CHANGED
@@ -1,131 +1,10 @@
1
- <div align="center">
2
- <h1>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1>
 
 
 
 
 
 
 
3
 
4
- [**Haofan Wang**](https://haofanwang.github.io/)<sup>*</sup> · [Matteo Spinelli](https://github.com/cubiq) · [**Qixun Wang**](https://github.com/wangqixun) · [**Xu Bai**](https://huggingface.co/baymin0220) · [**Zekui Qin**](https://github.com/ZekuiQin) · [**Anthony Chen**](https://antonioo-c.github.io/)
5
-
6
- InstantX Team
7
-
8
- <sup>*</sup>corresponding authors
9
-
10
- <a href='[https://instantid.github.io/](https://instantstyle.github.io/)'><img src='https://img.shields.io/badge/Project-Page-green'></a>
11
- <a href='https://arxiv.org/abs/2404.02733'><img src='https://img.shields.io/badge/Technique-Report-red'></a>
12
- [![GitHub](https://img.shields.io/github/stars/InstantStyle/InstantStyle?style=social)](https://github.com/InstantStyle/InstantStyle)
13
-
14
- </div>
15
-
16
- InstantStyle is a general framework that employs two straightforward yet potent techniques for achieving an effective disentanglement of style and content from reference images.
17
-
18
- <img src='assets/pipe.png'>
19
-
20
- ## Principle
21
-
22
- Separating Content from Image. Benefit from the good characterization of CLIP global features, after subtracting the content text fea- tures from the image features, the style and content can be explicitly decoupled. Although simple, this strategy is quite effective in mitigating content leakage.
23
- <p align="center">
24
- <img src="assets/subtraction.png">
25
- </p>
26
-
27
- Injecting into Style Blocks Only. Empirically, each layer of a deep network captures different semantic information the key observation in our work is that there exists two specific attention layers handling style. Specifically, we find up blocks.0.attentions.1 and down blocks.2.attentions.1 capture style (color, material, atmosphere) and spatial layout (structure, composition) respectively.
28
- <p align="center">
29
- <img src="assets/tree.png">
30
- </p>
31
-
32
- ## Release
33
- - [2024/04/03] 🔥 We release the [technical report](https://arxiv.org/abs/2404.02733).
34
-
35
- ## Download
36
- Follow [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter?tab=readme-ov-file#download-models) to download pre-trained checkpoints.
37
-
38
- ## Demos
39
-
40
- ### Stylized Synthesis
41
-
42
- <p align="center">
43
- <img src="assets/example1.png">
44
- <img src="assets/example2.png">
45
- </p>
46
-
47
- ### Image-based Stylized Synthesis
48
-
49
- <p align="center">
50
- <img src="assets/example3.png">
51
- </p>
52
-
53
- ### Comparison with Previous Works
54
-
55
- <p align="center">
56
- <img src="assets/comparison.png">
57
- </p>
58
-
59
- ## Usage
60
-
61
- Our method is fully compatible with [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter). But for feature subtraction, it only works with IP-Adapter using global embeddings.
62
-
63
- ```python
64
- import torch
65
- from diffusers import StableDiffusionXLPipeline
66
- from PIL import Image
67
-
68
- from ip_adapter import IPAdapterXL
69
-
70
- base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
71
- image_encoder_path = "sdxl_models/image_encoder"
72
- ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
73
- device = "cuda"
74
-
75
- # load SDXL pipeline
76
- pipe = StableDiffusionXLPipeline.from_pretrained(
77
- base_model_path,
78
- torch_dtype=torch.float16,
79
- add_watermarker=False,
80
- )
81
-
82
- # load ip-adapter
83
- # target_blocks=["blocks"] for original IP-Adapter
84
- # target_blocks=["up_blocks.0.attentions.1"] for style blocks only
85
- # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
86
- ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])
87
-
88
- image = "./assets/0.jpg"
89
- image = Image.open(image)
90
- image.resize((512, 512))
91
-
92
- # generate image variations with only image prompt
93
- images = ip_model.generate(pil_image=image,
94
- prompt="a cat, masterpiece, best quality, high quality",
95
- negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
96
- scale=1.0,
97
- guidance_scale=5,
98
- num_samples=1,
99
- num_inference_steps=30,
100
- seed=42,
101
- #neg_content_prompt="a rabbit",
102
- #neg_content_scale=0.5,
103
- )
104
-
105
- images[0].save("result.png")
106
- ```
107
-
108
- We will support diffusers API soon.
109
-
110
- ## TODO
111
- - Support in diffusers API.
112
- - Support InstantID.
113
-
114
- ## Sponsor Us
115
- If you find this project useful, you can buy us a coffee via Github Sponsor! We support [Paypal](https://ko-fi.com/instantx) and [WeChat Pay](https://tinyurl.com/instantx-pay).
116
-
117
- ## Cite
118
- If you find InstantStyle useful for your research and applications, please cite us using this BibTeX:
119
-
120
- ```bibtex
121
- @misc{wang2024instantstyle,
122
- title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
123
- author={Haofan Wang and Qixun Wang and Xu Bai and Zekui Qin and Anthony Chen},
124
- year={2024},
125
- eprint={2404.02733},
126
- archivePrefix={arXiv},
127
- primaryClass={cs.CV}
128
- }
129
- ```
130
-
131
- For any question, please feel free to contact us via [email protected].
 
1
+ title: SDXS-512-0.9 GPU Demo -1 Steps
2
+ emoji:
3
+ colorFrom: yellow
4
+ colorTo: gray
5
+ sdk: gradio
6
+ sdk_version: 4.23.0
7
+ app_file: app.py
8
+ pinned: false
9
+ short_description: SDXS 1024 will Release this is based on SDXS-512-0.9
10