Spaces:
Running
Running
Lohia, Aditya
commited on
Commit
·
f24a24a
1
Parent(s):
e553ed7
update space
Browse files- app.py +41 -29
- gateway.py +84 -57
app.py
CHANGED
@@ -1,15 +1,34 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
from typing import Iterator
|
4 |
|
5 |
from dialog import get_dialog_box
|
6 |
from gateway import check_server_health, request_generation
|
7 |
|
|
|
|
|
|
|
8 |
# CONSTANTS
|
9 |
-
|
|
|
10 |
|
11 |
-
#
|
12 |
CLOUD_GATEWAY_API = os.getenv("API_ENDPOINT")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def toggle_ui():
|
@@ -18,7 +37,7 @@ def toggle_ui():
|
|
18 |
Returns:
|
19 |
hide/show main ui/dialog
|
20 |
"""
|
21 |
-
health = check_server_health(cloud_gateway_api=CLOUD_GATEWAY_API)
|
22 |
if health:
|
23 |
return gr.update(visible=True), gr.update(
|
24 |
visible=False
|
@@ -35,9 +54,8 @@ def generate(
|
|
35 |
system_prompt: str,
|
36 |
max_new_tokens: int = 1024,
|
37 |
temperature: float = 0.6,
|
38 |
-
|
39 |
-
|
40 |
-
repetition_penalty: float = 1.2,
|
41 |
) -> Iterator[str]:
|
42 |
"""Send a request to backend, fetch the streaming responses and emit to the UI.
|
43 |
|
@@ -61,14 +79,15 @@ def generate(
|
|
61 |
# sample method to yield responses from the llm model
|
62 |
outputs = []
|
63 |
for text in request_generation(
|
|
|
64 |
message=message,
|
65 |
system_prompt=system_prompt,
|
66 |
max_new_tokens=max_new_tokens,
|
67 |
temperature=temperature,
|
68 |
-
|
69 |
-
|
70 |
-
repetition_penalty=repetition_penalty,
|
71 |
cloud_gateway_api=CLOUD_GATEWAY_API,
|
|
|
72 |
):
|
73 |
outputs.append(text)
|
74 |
yield "".join(outputs)
|
@@ -94,28 +113,21 @@ chat_interface = gr.ChatInterface(
|
|
94 |
minimum=0.1,
|
95 |
maximum=4.0,
|
96 |
step=0.1,
|
97 |
-
value=
|
98 |
-
),
|
99 |
-
gr.Slider(
|
100 |
-
label="Top-p (nucleus sampling)",
|
101 |
-
minimum=0.05,
|
102 |
-
maximum=1.0,
|
103 |
-
step=0.05,
|
104 |
-
value=0.95,
|
105 |
),
|
106 |
gr.Slider(
|
107 |
-
label="
|
108 |
-
minimum
|
109 |
-
maximum=
|
110 |
-
step=1,
|
111 |
-
value=
|
112 |
),
|
113 |
gr.Slider(
|
114 |
-
label="
|
115 |
-
minimum
|
116 |
maximum=2.0,
|
117 |
-
step=0.
|
118 |
-
value=
|
119 |
),
|
120 |
],
|
121 |
stop_btn=None,
|
@@ -134,14 +146,14 @@ chat_interface = gr.ChatInterface(
|
|
134 |
|
135 |
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
136 |
# Get the server status before displaying UI
|
137 |
-
visibility = check_server_health(CLOUD_GATEWAY_API)
|
138 |
|
139 |
# Container for the main interface
|
140 |
with gr.Column(visible=visibility, elem_id="main_ui") as main_ui:
|
141 |
gr.Markdown(
|
142 |
f"""
|
143 |
-
# Gemma
|
144 |
-
This Space is an Alpha release that demonstrates [Gemma-3-27B-It](https://huggingface.co/google/gemma-3-27b-it) model running on AMD
|
145 |
"""
|
146 |
)
|
147 |
chat_interface.render()
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
import gradio as gr
|
4 |
from typing import Iterator
|
5 |
|
6 |
from dialog import get_dialog_box
|
7 |
from gateway import check_server_health, request_generation
|
8 |
|
9 |
+
# Setup logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
|
12 |
# CONSTANTS
|
13 |
+
# Get max new tokens from environment variable, if it is not set, default to 2048
|
14 |
+
MAX_NEW_TOKENS: int = os.getenv("MAX_NEW_TOKENS", 2048)
|
15 |
|
16 |
+
# Validate environment variables
|
17 |
CLOUD_GATEWAY_API = os.getenv("API_ENDPOINT")
|
18 |
+
if not CLOUD_GATEWAY_API:
|
19 |
+
raise EnvironmentError("API_ENDPOINT is not set.")
|
20 |
+
|
21 |
+
MODEL_NAME: str = os.getenv("MODEL_NAME")
|
22 |
+
if not MODEL_NAME:
|
23 |
+
raise EnvironmentError("MODEL_NAME is not set.")
|
24 |
+
|
25 |
+
# Get API Key
|
26 |
+
API_KEY = os.getenv("API_KEY")
|
27 |
+
if not API_KEY: # simple check to validate API Key
|
28 |
+
raise Exception("API Key not valid.")
|
29 |
+
|
30 |
+
# Create a header, avoid declaring multiple times
|
31 |
+
HEADER = {"x-api-key": f"{API_KEY}"}
|
32 |
|
33 |
|
34 |
def toggle_ui():
|
|
|
37 |
Returns:
|
38 |
hide/show main ui/dialog
|
39 |
"""
|
40 |
+
health = check_server_health(cloud_gateway_api=CLOUD_GATEWAY_API, header=HEADER)
|
41 |
if health:
|
42 |
return gr.update(visible=True), gr.update(
|
43 |
visible=False
|
|
|
54 |
system_prompt: str,
|
55 |
max_new_tokens: int = 1024,
|
56 |
temperature: float = 0.6,
|
57 |
+
frequency_penalty: float = 0.0,
|
58 |
+
presence_penalty: float = 0.0,
|
|
|
59 |
) -> Iterator[str]:
|
60 |
"""Send a request to backend, fetch the streaming responses and emit to the UI.
|
61 |
|
|
|
79 |
# sample method to yield responses from the llm model
|
80 |
outputs = []
|
81 |
for text in request_generation(
|
82 |
+
header=HEADER,
|
83 |
message=message,
|
84 |
system_prompt=system_prompt,
|
85 |
max_new_tokens=max_new_tokens,
|
86 |
temperature=temperature,
|
87 |
+
presence_penalty=presence_penalty,
|
88 |
+
frequency_penalty=frequency_penalty,
|
|
|
89 |
cloud_gateway_api=CLOUD_GATEWAY_API,
|
90 |
+
model_name=MODEL_NAME,
|
91 |
):
|
92 |
outputs.append(text)
|
93 |
yield "".join(outputs)
|
|
|
113 |
minimum=0.1,
|
114 |
maximum=4.0,
|
115 |
step=0.1,
|
116 |
+
value=0.3,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
),
|
118 |
gr.Slider(
|
119 |
+
label="Frequency penalty",
|
120 |
+
minimum=-2.0,
|
121 |
+
maximum=2.0,
|
122 |
+
step=0.1,
|
123 |
+
value=0.0,
|
124 |
),
|
125 |
gr.Slider(
|
126 |
+
label="Presence penalty",
|
127 |
+
minimum=-2.0,
|
128 |
maximum=2.0,
|
129 |
+
step=0.1,
|
130 |
+
value=0.0,
|
131 |
),
|
132 |
],
|
133 |
stop_btn=None,
|
|
|
146 |
|
147 |
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
148 |
# Get the server status before displaying UI
|
149 |
+
visibility = check_server_health(CLOUD_GATEWAY_API, header=HEADER)
|
150 |
|
151 |
# Container for the main interface
|
152 |
with gr.Column(visible=visibility, elem_id="main_ui") as main_ui:
|
153 |
gr.Markdown(
|
154 |
f"""
|
155 |
+
# Gemma 3 27b Instruct
|
156 |
+
This Space is an Alpha release that demonstrates [Gemma-3-27B-It](https://huggingface.co/google/gemma-3-27b-it) model running on AMD MI300 infrastructure. The space is built with Google Gemma 3 [License](https://ai.google.dev/gemma/terms). Feel free to play with it!
|
157 |
"""
|
158 |
)
|
159 |
chat_interface.render()
|
gateway.py
CHANGED
@@ -1,41 +1,54 @@
|
|
1 |
import json
|
|
|
2 |
import requests
|
|
|
3 |
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
Use the appropriate API endpoint to check the server health.
|
8 |
Args:
|
9 |
cloud_gateway_api: API endpoint to probe.
|
|
|
10 |
|
11 |
Returns:
|
12 |
True if server is active, false otherwise.
|
13 |
"""
|
14 |
try:
|
15 |
-
response = requests.get(
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
def request_generation(
|
|
|
25 |
message: str,
|
26 |
system_prompt: str,
|
27 |
cloud_gateway_api: str,
|
|
|
28 |
max_new_tokens: int = 1024,
|
29 |
-
temperature: float = 0.
|
30 |
-
|
31 |
-
|
32 |
-
repetition_penalty: float = 1.2,
|
33 |
):
|
34 |
"""
|
35 |
Request streaming generation from the cloud gateway API. Uses the simple requests module with stream=True to utilize
|
36 |
token-by-token generation from LLM.
|
37 |
|
38 |
Args:
|
|
|
39 |
message: prompt from the user.
|
40 |
system_prompt: system prompt to append.
|
41 |
cloud_gateway_api (str): API endpoint to send the request.
|
@@ -43,7 +56,6 @@ def request_generation(
|
|
43 |
temperature: the value used to module the next token probabilities.
|
44 |
top_p: if set to float<1, only the smallest set of most probable tokens with probabilities that add up to top_p
|
45 |
or higher are kept for generation.
|
46 |
-
top_k: the number of highest probability vocabulary tokens to keep for top-k-filtering.
|
47 |
repetition_penalty: the parameter for repetition penalty. 1.0 means no penalty.
|
48 |
|
49 |
Returns:
|
@@ -51,54 +63,69 @@ def request_generation(
|
|
51 |
"""
|
52 |
|
53 |
payload = {
|
54 |
-
"model":
|
55 |
"messages": [
|
56 |
-
|
57 |
-
|
58 |
-
{
|
59 |
-
"role": "system",
|
60 |
-
"content": [{"type": "text", "text": system_prompt}],
|
61 |
-
}
|
62 |
-
]
|
63 |
-
if system_prompt
|
64 |
-
else []
|
65 |
-
),
|
66 |
-
{"role": "user", "content": [{"type": "text", "text": message}]},
|
67 |
],
|
68 |
"max_tokens": max_new_tokens,
|
69 |
"temperature": temperature,
|
70 |
-
"
|
71 |
-
"
|
72 |
-
"top_k": top_k,
|
73 |
"stream": True, # Enable streaming
|
|
|
74 |
}
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
+
import logging
|
3 |
import requests
|
4 |
+
import urllib3
|
5 |
|
6 |
+
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
7 |
|
8 |
+
# Setup logging
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
+
|
11 |
+
|
12 |
+
def check_server_health(cloud_gateway_api: str, header: dict) -> bool:
|
13 |
"""
|
14 |
Use the appropriate API endpoint to check the server health.
|
15 |
Args:
|
16 |
cloud_gateway_api: API endpoint to probe.
|
17 |
+
header: Header for Authorization.
|
18 |
|
19 |
Returns:
|
20 |
True if server is active, false otherwise.
|
21 |
"""
|
22 |
try:
|
23 |
+
response = requests.get(
|
24 |
+
cloud_gateway_api + "model/info",
|
25 |
+
headers=header,
|
26 |
+
verify=False,
|
27 |
+
)
|
28 |
+
response.raise_for_status()
|
29 |
+
return True
|
30 |
+
except requests.RequestException as e:
|
31 |
+
logging.error(f"Failed to check server health: {e}")
|
32 |
+
return False
|
33 |
|
34 |
|
35 |
def request_generation(
|
36 |
+
header: dict,
|
37 |
message: str,
|
38 |
system_prompt: str,
|
39 |
cloud_gateway_api: str,
|
40 |
+
model_name: str,
|
41 |
max_new_tokens: int = 1024,
|
42 |
+
temperature: float = 0.3,
|
43 |
+
frequency_penalty: float = 0.0,
|
44 |
+
presence_penalty: float = 0.0,
|
|
|
45 |
):
|
46 |
"""
|
47 |
Request streaming generation from the cloud gateway API. Uses the simple requests module with stream=True to utilize
|
48 |
token-by-token generation from LLM.
|
49 |
|
50 |
Args:
|
51 |
+
header: authorization header for the API.
|
52 |
message: prompt from the user.
|
53 |
system_prompt: system prompt to append.
|
54 |
cloud_gateway_api (str): API endpoint to send the request.
|
|
|
56 |
temperature: the value used to module the next token probabilities.
|
57 |
top_p: if set to float<1, only the smallest set of most probable tokens with probabilities that add up to top_p
|
58 |
or higher are kept for generation.
|
|
|
59 |
repetition_penalty: the parameter for repetition penalty. 1.0 means no penalty.
|
60 |
|
61 |
Returns:
|
|
|
63 |
"""
|
64 |
|
65 |
payload = {
|
66 |
+
"model": model_name,
|
67 |
"messages": [
|
68 |
+
{"role": "system", "content": system_prompt},
|
69 |
+
{"role": "user", "content": message},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
],
|
71 |
"max_tokens": max_new_tokens,
|
72 |
"temperature": temperature,
|
73 |
+
"frequency_penalty": frequency_penalty,
|
74 |
+
"presence_penalty": presence_penalty,
|
|
|
75 |
"stream": True, # Enable streaming
|
76 |
+
"serving_runtime": "vllm",
|
77 |
}
|
78 |
|
79 |
+
try:
|
80 |
+
response = requests.post(
|
81 |
+
cloud_gateway_api + "chat/conversation",
|
82 |
+
headers=header,
|
83 |
+
json=payload,
|
84 |
+
verify=False,
|
85 |
+
)
|
86 |
+
response.raise_for_status()
|
87 |
+
|
88 |
+
# Append the conversation ID with the key X-Conversation-ID to the header
|
89 |
+
header["X-Conversation-ID"] = response.json()["conversationId"]
|
90 |
+
|
91 |
+
with requests.get(
|
92 |
+
cloud_gateway_api + f"conversation/stream",
|
93 |
+
headers=header,
|
94 |
+
verify=False,
|
95 |
+
stream=True,
|
96 |
+
) as response:
|
97 |
+
for chunk in response.iter_lines():
|
98 |
+
if chunk:
|
99 |
+
# Convert the chunk from bytes to a string and then parse it as json
|
100 |
+
chunk_str = chunk.decode("utf-8")
|
101 |
+
|
102 |
+
# Remove the `data: ` prefix from the chunk if it exists
|
103 |
+
for _ in range(2):
|
104 |
+
if chunk_str.startswith("data: "):
|
105 |
+
chunk_str = chunk_str[len("data: ") :]
|
106 |
+
|
107 |
+
# Skip empty chunks
|
108 |
+
if chunk_str.strip() == "[DONE]":
|
109 |
+
break
|
110 |
+
|
111 |
+
# Parse the chunk into a JSON object
|
112 |
+
try:
|
113 |
+
chunk_json = json.loads(chunk_str)
|
114 |
+
|
115 |
+
# Extract the "content" field from the choices
|
116 |
+
if "choices" in chunk_json and chunk_json["choices"]:
|
117 |
+
content = chunk_json["choices"][0]["delta"].get(
|
118 |
+
"content", ""
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
content = ""
|
122 |
+
|
123 |
+
# Print the generated content as it's streamed
|
124 |
+
if content:
|
125 |
+
yield content
|
126 |
+
except json.JSONDecodeError:
|
127 |
+
# Handle any potential errors in decoding
|
128 |
+
continue
|
129 |
+
except requests.RequestException as e:
|
130 |
+
logging.error(f"Failed to generate response: {e}")
|
131 |
+
yield "Server not responding. Please try again later."
|