DuckDB-UI / database_api.py
amaye15's picture
Deploy
c26b6eb
raw
history blame
19.2 kB
# database_api.py
import duckdb
import pandas as pd
import pyarrow as pa
import pyarrow.ipc
from pathlib import Path
import tempfile
import os
import shutil
from typing import Optional, List, Dict, Any, Union, Iterator, Generator, Tuple
# No need for pybind11 import here anymore
# --- Custom Exceptions ---
class DatabaseAPIError(Exception):
"""Base exception for our custom API."""
pass
class QueryError(DatabaseAPIError):
"""Exception raised for errors during query execution."""
pass
# --- Helper function to format COPY options ---
def _format_copy_options(options: Optional[Dict[str, Any]]) -> str:
if not options:
return ""
opts_parts = []
for k, v in options.items():
key_upper = k.upper()
if isinstance(v, bool):
value_repr = str(v).upper()
elif isinstance(v, (int, float)):
value_repr = str(v)
elif isinstance(v, str):
escaped_v = v.replace("'", "''")
value_repr = f"'{escaped_v}'"
else:
value_repr = repr(v)
opts_parts.append(f"{key_upper} {value_repr}")
opts_str = ", ".join(opts_parts)
return f"WITH ({opts_str})"
# --- Main DatabaseAPI Class ---
class DatabaseAPI:
def __init__(self,
db_path: Union[str, Path] = ":memory:",
read_only: bool = False,
config: Optional[Dict[str, str]] = None):
self._db_path = str(db_path)
self._config = config or {}
self._read_only = read_only
self._conn: Optional[duckdb.DuckDBPyConnection] = None
try:
self._conn = duckdb.connect(
database=self._db_path,
read_only=self._read_only,
config=self._config
)
print(f"Connected to DuckDB database at '{self._db_path}'")
except duckdb.Error as e:
print(f"Failed to connect to DuckDB: {e}")
raise DatabaseAPIError(f"Failed to connect to DuckDB: {e}") from e
def _ensure_connection(self):
if self._conn is None:
raise DatabaseAPIError("Database connection is not established or has been closed.")
try:
self._conn.execute("SELECT 1", [])
except (duckdb.ConnectionException, RuntimeError) as e:
if "Connection has already been closed" in str(e) or "connection closed" in str(e).lower():
self._conn = None
raise DatabaseAPIError("Database connection is closed.") from e
else:
raise DatabaseAPIError(f"Database connection error: {e}") from e
# --- Basic Query Methods --- (Keep as before)
def execute_sql(self, sql: str, parameters: Optional[List[Any]] = None) -> None:
self._ensure_connection()
print(f"Executing SQL: {sql}")
try:
self._conn.execute(sql, parameters)
except duckdb.Error as e:
print(f"Error executing SQL: {e}")
raise QueryError(f"Error executing SQL: {e}") from e
def query_sql(self, sql: str, parameters: Optional[List[Any]] = None) -> duckdb.DuckDBPyRelation:
self._ensure_connection()
print(f"Querying SQL: {sql}")
try:
return self._conn.sql(sql, params=parameters)
except duckdb.Error as e:
print(f"Error querying SQL: {e}")
raise QueryError(f"Error querying SQL: {e}") from e
def query_df(self, sql: str, parameters: Optional[List[Any]] = None) -> pd.DataFrame:
self._ensure_connection()
print(f"Querying SQL to DataFrame: {sql}")
try:
return self._conn.execute(sql, parameters).df()
except ImportError:
print("Pandas library is required for DataFrame operations.")
raise
except duckdb.Error as e:
print(f"Error querying SQL to DataFrame: {e}")
raise QueryError(f"Error querying SQL to DataFrame: {e}") from e
def query_arrow(self, sql: str, parameters: Optional[List[Any]] = None) -> pa.Table:
self._ensure_connection()
print(f"Querying SQL to Arrow Table: {sql}")
try:
return self._conn.execute(sql, parameters).arrow()
except ImportError:
print("PyArrow library is required for Arrow operations.")
raise
except duckdb.Error as e:
print(f"Error querying SQL to Arrow Table: {e}")
raise QueryError(f"Error querying SQL to Arrow Table: {e}") from e
def query_fetchall(self, sql: str, parameters: Optional[List[Any]] = None) -> List[Tuple[Any, ...]]:
self._ensure_connection()
print(f"Querying SQL and fetching all: {sql}")
try:
return self._conn.execute(sql, parameters).fetchall()
except duckdb.Error as e:
print(f"Error querying SQL: {e}")
raise QueryError(f"Error querying SQL: {e}") from e
def query_fetchone(self, sql: str, parameters: Optional[List[Any]] = None) -> Optional[Tuple[Any, ...]]:
self._ensure_connection()
print(f"Querying SQL and fetching one: {sql}")
try:
return self._conn.execute(sql, parameters).fetchone()
except duckdb.Error as e:
print(f"Error querying SQL: {e}")
raise QueryError(f"Error querying SQL: {e}") from e
# --- Registration Methods --- (Keep as before)
def register_df(self, name: str, df: pd.DataFrame):
self._ensure_connection()
print(f"Registering DataFrame as '{name}'")
try:
self._conn.register(name, df)
except duckdb.Error as e:
print(f"Error registering DataFrame: {e}")
raise QueryError(f"Error registering DataFrame: {e}") from e
def unregister_df(self, name: str):
self._ensure_connection()
print(f"Unregistering virtual table '{name}'")
try:
self._conn.unregister(name)
except duckdb.Error as e:
if "not found" in str(e).lower():
print(f"Warning: Virtual table '{name}' not found for unregistering.")
else:
print(f"Error unregistering virtual table: {e}")
raise QueryError(f"Error unregistering virtual table: {e}") from e
# --- Extension Methods --- (Keep as before)
def install_extension(self, extension_name: str, force_install: bool = False):
self._ensure_connection()
print(f"Installing extension: {extension_name}")
try:
self._conn.install_extension(extension_name, force_install=force_install)
except duckdb.Error as e:
print(f"Error installing extension '{extension_name}': {e}")
raise DatabaseAPIError(f"Error installing extension '{extension_name}': {e}") from e
def load_extension(self, extension_name: str):
self._ensure_connection()
print(f"Loading extension: {extension_name}")
try:
self._conn.load_extension(extension_name)
# Catch specific DuckDB errors that indicate failure but aren't API errors
except (duckdb.IOException, duckdb.CatalogException) as load_err:
print(f"Error loading extension '{extension_name}': {load_err}")
raise QueryError(f"Error loading extension '{extension_name}': {load_err}") from load_err
except duckdb.Error as e: # Catch other DuckDB errors
print(f"Unexpected DuckDB error loading extension '{extension_name}': {e}")
raise DatabaseAPIError(f"Unexpected DuckDB error loading extension '{extension_name}': {e}") from e
# --- Export Methods ---
def export_database(self, directory_path: Union[str, Path]):
self._ensure_connection()
path_str = str(directory_path)
if not os.path.isdir(path_str):
try:
os.makedirs(path_str)
print(f"Created export directory: {path_str}")
except OSError as e:
raise DatabaseAPIError(f"Could not create export directory '{path_str}': {e}") from e
print(f"Exporting database to directory: {path_str}")
sql = f"EXPORT DATABASE '{path_str}' (FORMAT CSV)"
try:
self._conn.execute(sql)
print("Database export completed successfully.")
except duckdb.Error as e:
print(f"Error exporting database: {e}")
raise DatabaseAPIError(f"Error exporting database: {e}") from e
def _export_data(self,
source: str,
output_path: Union[str, Path],
file_format: str,
options: Optional[Dict[str, Any]] = None):
self._ensure_connection()
path_str = str(output_path)
options_str = _format_copy_options(options)
source_safe = source.strip()
# --- MODIFIED: Use f-string quoting instead of quote_identifier ---
if ' ' in source_safe or source_safe.upper().startswith(('SELECT', 'WITH', 'VALUES')):
copy_source = f"({source})"
else:
# Simple quoting, might need refinement for complex identifiers
copy_source = f'"{source_safe}"'
# --- END MODIFICATION ---
sql = f"COPY {copy_source} TO '{path_str}' {options_str}"
print(f"Exporting data to {path_str} (Format: {file_format}) with options: {options or {}}")
try:
self._conn.execute(sql)
print("Data export completed successfully.")
except duckdb.Error as e:
print(f"Error exporting data: {e}")
raise QueryError(f"Error exporting data to {file_format}: {e}") from e
# --- Keep export_data_to_csv, parquet, json, jsonl as before ---
def export_data_to_csv(self,
source: str,
output_path: Union[str, Path],
options: Optional[Dict[str, Any]] = None):
csv_options = options.copy() if options else {}
csv_options['FORMAT'] = 'CSV'
if 'HEADER' not in {k.upper() for k in csv_options}:
csv_options['HEADER'] = True
self._export_data(source, output_path, "CSV", csv_options)
def export_data_to_parquet(self,
source: str,
output_path: Union[str, Path],
options: Optional[Dict[str, Any]] = None):
parquet_options = options.copy() if options else {}
parquet_options['FORMAT'] = 'PARQUET'
self._export_data(source, output_path, "Parquet", parquet_options)
def export_data_to_json(self,
source: str,
output_path: Union[str, Path],
array_format: bool = True,
options: Optional[Dict[str, Any]] = None):
json_options = options.copy() if options else {}
json_options['FORMAT'] = 'JSON'
if 'ARRAY' not in {k.upper() for k in json_options}:
json_options['ARRAY'] = array_format
self._export_data(source, output_path, "JSON", json_options)
def export_data_to_jsonl(self,
source: str,
output_path: Union[str, Path],
options: Optional[Dict[str, Any]] = None):
self.export_data_to_json(source, output_path, array_format=False, options=options)
# # --- Streaming Read Methods --- (Keep as before)
# def stream_query_arrow(self,
# sql: str,
# parameters: Optional[List[Any]] = None,
# batch_size: int = 1000000
# ) -> Iterator[pa.RecordBatch]:
# self._ensure_connection()
# print(f"Streaming Arrow query (batch size {batch_size}): {sql}")
# try:
# result_set = self._conn.execute(sql, parameters)
# while True:
# batch = result_set.fetch_record_batch(batch_size)
# if not batch:
# break
# yield batch
# except ImportError:
# print("PyArrow library is required for Arrow streaming.")
# raise
# except duckdb.Error as e:
# print(f"Error streaming Arrow query: {e}")
# raise QueryError(f"Error streaming Arrow query: {e}") from e
def stream_query_df(self,
sql: str,
parameters: Optional[List[Any]] = None,
vectors_per_chunk: int = 1
) -> Iterator[pd.DataFrame]:
self._ensure_connection()
print(f"Streaming DataFrame query (vectors per chunk {vectors_per_chunk}): {sql}")
try:
result_set = self._conn.execute(sql, parameters)
while True:
chunk_df = result_set.fetch_df_chunk(vectors_per_chunk)
if chunk_df.empty:
break
yield chunk_df
except ImportError:
print("Pandas library is required for DataFrame streaming.")
raise
except duckdb.Error as e:
print(f"Error streaming DataFrame query: {e}")
raise QueryError(f"Error streaming DataFrame query: {e}") from e
def stream_query_arrow(self,
sql: str,
parameters: Optional[List[Any]] = None,
batch_size: int = 1000000
) -> Iterator[pa.RecordBatch]:
"""
Executes a SQL query and streams the results as Arrow RecordBatches.
Useful for processing large results iteratively in Python without
loading the entire result set into memory.
Args:
sql: The SQL query to execute.
parameters: Optional list of parameters for prepared statements.
batch_size: The approximate number of rows per Arrow RecordBatch.
Yields:
pyarrow.RecordBatch: Chunks of the result set.
Raises:
QueryError: If the query execution or fetching fails.
ImportError: If pyarrow is not installed.
"""
self._ensure_connection()
print(f"Streaming Arrow query (batch size {batch_size}): {sql}")
record_batch_reader = None
try:
# Use execute() to get a result object that supports streaming fetch
result_set = self._conn.execute(sql, parameters)
# --- MODIFICATION: Get the reader first ---
record_batch_reader = result_set.fetch_record_batch(batch_size)
# --- Iterate through the reader ---
for batch in record_batch_reader:
yield batch
# --- END MODIFICATION ---
except ImportError:
print("PyArrow library is required for Arrow streaming.")
raise
except duckdb.Error as e:
print(f"Error streaming Arrow query: {e}")
raise QueryError(f"Error streaming Arrow query: {e}") from e
finally:
# Clean up the reader if it was created
if record_batch_reader is not None:
# PyArrow readers don't have an explicit close, relying on GC.
# Forcing cleanup might involve ensuring references are dropped.
del record_batch_reader # Help GC potentially
# The original result_set from execute() might also hold resources,
# although fetch_record_batch typically consumes it.
# Explicitly closing it if possible, or letting it go out of scope.
if 'result_set' in locals() and result_set:
try:
# DuckDBPyResult doesn't have an explicit close, relies on __del__
del result_set
except Exception:
pass # Best effort
# --- Resource Management Methods --- (Keep as before)
def close(self):
if self._conn:
conn_id = id(self._conn)
print(f"Closing connection to '{self._db_path}' (ID: {conn_id})")
try:
self._conn.close()
except duckdb.Error as e:
print(f"Error closing DuckDB connection (ID: {conn_id}): {e}")
finally:
self._conn = None
else:
print("Connection already closed or never opened.")
def __enter__(self):
self._ensure_connection()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def __del__(self):
if self._conn:
print(f"ResourceWarning: DatabaseAPI for '{self._db_path}' was not explicitly closed. Closing now in __del__.")
try:
self.close()
except Exception as e:
print(f"Exception during implicit close in __del__: {e}")
self._conn = None
# --- Example Usage --- (Keep as before)
if __name__ == "__main__":
# ... (rest of the example usage code from previous response) ...
temp_dir_obj = tempfile.TemporaryDirectory()
temp_dir = temp_dir_obj.name
print(f"\n--- Using temporary directory: {temp_dir} ---")
db_file = Path(temp_dir) / "export_test.db"
try:
with DatabaseAPI(db_path=db_file) as db_api:
db_api.execute_sql("CREATE OR REPLACE TABLE products(id INTEGER, name VARCHAR, price DECIMAL(8,2))")
db_api.execute_sql("INSERT INTO products VALUES (101, 'Gadget', 19.99), (102, 'Widget', 35.00), (103, 'Thing''amajig', 9.50)")
db_api.execute_sql("CREATE OR REPLACE TABLE sales(product_id INTEGER, sale_date DATE, quantity INTEGER)")
db_api.execute_sql("INSERT INTO sales VALUES (101, '2023-10-26', 5), (102, '2023-10-26', 2), (101, '2023-10-27', 3)")
export_dir = Path(temp_dir) / "exported_db"
db_api.export_database(export_dir)
csv_path = Path(temp_dir) / "products_export.csv"
db_api.export_data_to_csv('products', csv_path, options={'HEADER': True})
parquet_path = Path(temp_dir) / "high_value_products.parquet"
db_api.export_data_to_parquet("SELECT * FROM products WHERE price > 20", parquet_path, options={'COMPRESSION': 'SNAPPY'})
json_path = Path(temp_dir) / "sales.json"
db_api.export_data_to_json("SELECT * FROM sales", json_path, array_format=True)
jsonl_path = Path(temp_dir) / "sales.jsonl"
db_api.export_data_to_jsonl("SELECT * FROM sales ORDER BY sale_date", jsonl_path)
with DatabaseAPI() as db_api:
db_api.execute_sql("CREATE TABLE large_range AS SELECT range AS id, range % 100 AS category FROM range(1000)")
for batch in db_api.stream_query_arrow("SELECT * FROM large_range", batch_size=200):
pass
for df_chunk in db_api.stream_query_df("SELECT * FROM large_range", vectors_per_chunk=1):
pass
finally:
temp_dir_obj.cleanup()
print(f"\n--- Cleaned up temporary directory: {temp_dir} ---")