File size: 16,480 Bytes
f959360 c26b6eb 5dc86cf c26b6eb 5dc86cf f959360 5dc86cf f959360 5dc86cf f959360 5dc86cf f959360 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf f959360 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf c26b6eb 5dc86cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import duckdb
import os
from fastapi import FastAPI, HTTPException, Request, Path as FastPath
from fastapi.responses import FileResponse, StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional
import logging
import io
import asyncio
# --- Configuration ---
DATABASE_PATH = os.environ.get("DUCKDB_PATH", "data/mydatabase.db")
DATA_DIR = "data"
# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
# --- Logging ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- FastAPI App ---
app = FastAPI(
title="DuckDB API",
description="An API to interact with a DuckDB database.",
version="0.1.0"
)
# --- Database Connection ---
# For simplicity in this example, we connect within each request.
# For production, consider dependency injection or connection pooling.
def get_db():
try:
# Check if the database file needs initialization
initialize = not os.path.exists(DATABASE_PATH) or os.path.getsize(DATABASE_PATH) == 0
conn = duckdb.connect(DATABASE_PATH, read_only=False)
if initialize:
logger.info(f"Database file not found or empty at {DATABASE_PATH}. Initializing.")
# You could add initial schema setup here if needed
# conn.execute("CREATE TABLE IF NOT EXISTS initial_table (id INTEGER, name VARCHAR);")
yield conn
except duckdb.Error as e:
logger.error(f"Database connection error: {e}")
raise HTTPException(status_code=500, detail=f"Database connection error: {e}")
finally:
if 'conn' in locals() and conn:
conn.close()
# --- Pydantic Models ---
class ColumnDefinition(BaseModel):
name: str
type: str
class CreateTableRequest(BaseModel):
columns: List[ColumnDefinition]
class CreateRowRequest(BaseModel):
# List of rows, where each row is a dict of column_name: value
rows: List[Dict[str, Any]]
class UpdateRowRequest(BaseModel):
updates: Dict[str, Any] # Column value pairs to set
condition: str # SQL WHERE clause string to identify rows
class DeleteRowRequest(BaseModel):
condition: str # SQL WHERE clause string to identify rows
class ApiResponse(BaseModel):
message: str
details: Optional[Any] = None
# --- Helper Functions ---
def safe_identifier(name: str) -> str:
"""Quotes an identifier safely."""
if not name.isidentifier():
# Basic check, consider more robust validation/sanitization if needed
# Use DuckDB's quoting
try:
conn = duckdb.connect(':memory:')
quoted = conn.execute(f"SELECT '{name}'::IDENTIFIER").fetchone()[0]
conn.close()
return quoted
except duckdb.Error:
raise HTTPException(status_code=400, detail=f"Invalid identifier: {name}")
# Also quote standard identifiers to be safe
return f'"{name}"'
def generate_column_sql(columns: List[ColumnDefinition]) -> str:
"""Generates the column definition part of a CREATE TABLE statement."""
defs = []
for col in columns:
col_name_safe = safe_identifier(col.name)
# Basic type validation (can be expanded)
allowed_types = ['INTEGER', 'VARCHAR', 'TEXT', 'BOOLEAN', 'FLOAT', 'DOUBLE', 'DATE', 'TIMESTAMP', 'BLOB', 'BIGINT', 'DECIMAL']
type_upper = col.type.strip().upper()
# Allow DECIMAL(p,s) syntax
if not (type_upper.startswith('DECIMAL(') and type_upper.endswith(')')) and \
not any(base_type in type_upper for base_type in allowed_types):
raise HTTPException(status_code=400, detail=f"Unsupported or invalid data type: {col.type}")
defs.append(f"{col_name_safe} {col.type}")
return ", ".join(defs)
# --- API Endpoints ---
@app.get("/", summary="API Root", response_model=ApiResponse)
async def read_root():
"""Provides a welcome message for the API."""
return {"message": "Welcome to the DuckDB API!"}
@app.post("/tables/{table_name}", summary="Create Table", response_model=ApiResponse, status_code=201)
async def create_table(
table_name: str = FastPath(..., description="Name of the table to create"),
schema: CreateTableRequest = ...,
):
"""Creates a new table with the specified schema."""
table_name_safe = safe_identifier(table_name)
if not schema.columns:
raise HTTPException(status_code=400, detail="Table must have at least one column.")
try:
columns_sql = generate_column_sql(schema.columns)
sql = f"CREATE TABLE {table_name_safe} ({columns_sql});"
logger.info(f"Executing SQL: {sql}")
for conn in get_db():
conn.execute(sql)
return {"message": f"Table '{table_name}' created successfully."}
except HTTPException as e: # Re-raise validation errors
raise e
except duckdb.Error as e:
logger.error(f"Error creating table '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error creating table: {e}")
except Exception as e:
logger.error(f"Unexpected error creating table '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.get("/tables/{table_name}", summary="Read Table Data")
async def read_table(
table_name: str = FastPath(..., description="Name of the table to read from"),
limit: Optional[int] = None,
offset: Optional[int] = None
):
"""Reads and returns all rows from a specified table. Supports limit and offset."""
table_name_safe = safe_identifier(table_name)
sql = f"SELECT * FROM {table_name_safe}"
params = []
if limit is not None:
sql += " LIMIT ?"
params.append(limit)
if offset is not None:
sql += " OFFSET ?"
params.append(offset)
sql += ";"
try:
logger.info(f"Executing SQL: {sql} with params: {params}")
for conn in get_db():
result = conn.execute(sql, params).fetchall()
# Convert rows to dictionaries for JSON serialization
column_names = [desc[0] for desc in conn.description]
data = [dict(zip(column_names, row)) for row in result]
return data
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error reading table '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error reading table: {e}")
except Exception as e:
logger.error(f"Unexpected error reading table '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/tables/{table_name}/rows", summary="Create Rows", response_model=ApiResponse, status_code=201)
async def create_rows(
table_name: str = FastPath(..., description="Name of the table to insert into"),
request: CreateRowRequest = ...,
):
"""Inserts one or more rows into the specified table."""
table_name_safe = safe_identifier(table_name)
if not request.rows:
raise HTTPException(status_code=400, detail="No rows provided to insert.")
# Assume all rows have the same columns based on the first row
columns = list(request.rows[0].keys())
columns_safe = [safe_identifier(col) for col in columns]
placeholders = ", ".join(["?"] * len(columns))
columns_sql = ", ".join(columns_safe)
sql = f"INSERT INTO {table_name_safe} ({columns_sql}) VALUES ({placeholders});"
# Convert list of dicts to list of lists/tuples for executemany
params_list = []
for row_dict in request.rows:
if list(row_dict.keys()) != columns:
raise HTTPException(status_code=400, detail="All rows must have the same columns in the same order.")
params_list.append(list(row_dict.values()))
try:
logger.info(f"Executing SQL: {sql} for {len(params_list)} rows")
for conn in get_db():
conn.executemany(sql, params_list)
conn.commit() # Explicit commit after potential bulk insert
return {"message": f"Successfully inserted {len(params_list)} rows into '{table_name}'."}
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error inserting rows into '{table_name}': {e}")
# Rollback on error might be needed depending on transaction behavior
# For get_db creating connection per request, this is less critical
raise HTTPException(status_code=400, detail=f"Error inserting rows: {e}")
except Exception as e:
logger.error(f"Unexpected error inserting rows into '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.put("/tables/{table_name}/rows", summary="Update Rows", response_model=ApiResponse)
async def update_rows(
table_name: str = FastPath(..., description="Name of the table to update"),
request: UpdateRowRequest = ...,
):
"""Updates rows in the table based on a condition."""
table_name_safe = safe_identifier(table_name)
if not request.updates:
raise HTTPException(status_code=400, detail="No updates provided.")
if not request.condition:
raise HTTPException(status_code=400, detail="Update condition (WHERE clause) is required.")
set_clauses = []
params = []
for col, value in request.updates.items():
set_clauses.append(f"{safe_identifier(col)} = ?")
params.append(value)
set_sql = ", ".join(set_clauses)
# WARNING: Injecting request.condition directly is a security risk.
# In a real app, use query parameters or a safer way to build the WHERE clause.
sql = f"UPDATE {table_name_safe} SET {set_sql} WHERE {request.condition};"
try:
logger.info(f"Executing SQL: {sql} with params: {params}")
for conn in get_db():
# Use execute for safety with parameters
conn.execute(sql, params)
conn.commit()
return {"message": f"Rows in '{table_name}' updated successfully based on condition."}
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error updating rows in '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error updating rows: {e}")
except Exception as e:
logger.error(f"Unexpected error updating rows in '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.delete("/tables/{table_name}/rows", summary="Delete Rows", response_model=ApiResponse)
async def delete_rows(
table_name: str = FastPath(..., description="Name of the table to delete from"),
request: DeleteRowRequest = ...,
):
"""Deletes rows from the table based on a condition."""
table_name_safe = safe_identifier(table_name)
if not request.condition:
raise HTTPException(status_code=400, detail="Delete condition (WHERE clause) is required.")
# WARNING: Injecting request.condition directly is a security risk.
# In a real app, use query parameters or a safer way to build the WHERE clause.
sql = f"DELETE FROM {table_name_safe} WHERE {request.condition};"
try:
logger.info(f"Executing SQL: {sql}")
for conn in get_db():
# Execute does not directly support parameters for WHERE in DELETE like this easily
conn.execute(sql)
conn.commit()
return {"message": f"Rows from '{table_name}' deleted successfully based on condition."}
except duckdb.CatalogException as e:
raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found.")
except duckdb.Error as e:
logger.error(f"Error deleting rows from '{table_name}': {e}")
raise HTTPException(status_code=400, detail=f"Error deleting rows: {e}")
except Exception as e:
logger.error(f"Unexpected error deleting rows from '{table_name}': {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
# --- Download Endpoints ---
@app.get("/download/table/{table_name}", summary="Download Table as CSV")
async def download_table_csv(
table_name: str = FastPath(..., description="Name of the table to download")
):
"""Downloads the entire content of a table as a CSV file."""
table_name_safe = safe_identifier(table_name)
# Use COPY TO STDOUT for efficient streaming
sql = f"COPY (SELECT * FROM {table_name_safe}) TO STDOUT (FORMAT CSV, HEADER)"
async def stream_csv_data():
# We need a non-blocking way to stream data from DuckDB.
# DuckDB's Python API is blocking. A simple approach for this demo
# is to fetch all data first, then stream it.
# A more advanced approach would involve running the DuckDB query
# in a separate thread or process pool managed by asyncio.
try:
all_data_io = io.StringIO()
# This COPY TO variant isn't directly available in Python API for streaming to a buffer easily.
# Let's fetch data and format as CSV manually or use Pandas.
for conn in get_db():
df = conn.execute(f"SELECT * FROM {table_name_safe}").df() # Use pandas for CSV conversion
# Use an in-memory text buffer
df.to_csv(all_data_io, index=False)
all_data_io.seek(0)
# Stream the content chunk by chunk
chunk_size = 8192
while True:
chunk = all_data_io.read(chunk_size)
if not chunk:
break
yield chunk
# Allow other tasks to run
await asyncio.sleep(0)
all_data_io.close()
except duckdb.CatalogException as e:
# Stream an error message if the table doesn't exist
yield f"Error: Table '{table_name}' not found.".encode('utf-8')
logger.error(f"Error downloading table '{table_name}': {e}")
except duckdb.Error as e:
yield f"Error: Could not export table '{table_name}'. {e}".encode('utf-8')
logger.error(f"Error downloading table '{table_name}': {e}")
except Exception as e:
yield f"Error: An unexpected error occurred.".encode('utf-8')
logger.error(f"Unexpected error downloading table '{table_name}': {e}")
return StreamingResponse(
stream_csv_data(),
media_type="text/csv",
headers={"Content-Disposition": f"attachment; filename={table_name}.csv"},
)
@app.get("/download/database", summary="Download Database File")
async def download_database_file():
"""Downloads the entire DuckDB database file."""
if not os.path.exists(DATABASE_PATH):
raise HTTPException(status_code=404, detail="Database file not found.")
# Ensure connections are closed before downloading to avoid partial writes/locking issues.
# This is tricky with the current get_db pattern. A proper app stop/start or
# dedicated maintenance mode would be better. For this demo, we hope for the best.
logger.warning("Attempting to download database file. Ensure no active writes are occurring.")
return FileResponse(
path=DATABASE_PATH,
filename=os.path.basename(DATABASE_PATH),
media_type="application/octet-stream" # Generic binary file type
)
# --- Health Check ---
@app.get("/health", summary="Health Check", response_model=ApiResponse)
async def health_check():
"""Checks if the API and database connection are working."""
try:
for conn in get_db():
conn.execute("SELECT 1")
return {"message": "API is healthy and database connection is successful."}
except Exception as e:
logger.error(f"Health check failed: {e}")
raise HTTPException(status_code=503, detail=f"Health check failed: {e}")
# --- Optional: Add Startup/Shutdown events if needed ---
# @app.on_event("startup")
# async def startup_event():
# # Initialize database connection pool, etc.
# logger.info("Application startup.")
# @app.on_event("shutdown")
# async def shutdown_event():
# # Clean up resources, close connections, etc.
# logger.info("Application shutdown.") |