Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
import faiss
|
| 5 |
+
import pickle
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from groq import Groq
|
| 8 |
+
|
| 9 |
+
# Load environment variables
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
load_dotenv()
|
| 12 |
+
|
| 13 |
+
# Setup Groq client
|
| 14 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 15 |
+
MODEL_NAME = "llama-3-70b-8192" # Or use "llama-3-8b-8192", "llama-3-3b-8192"
|
| 16 |
+
|
| 17 |
+
# Load dataset
|
| 18 |
+
@st.cache_data
|
| 19 |
+
def load_data():
|
| 20 |
+
url = "https://huggingface.co/datasets/llmware/rag_instruct_benchmark_tester/resolve/main/rag_instruct_benchmark_tester.csv"
|
| 21 |
+
df = pd.read_csv(url)
|
| 22 |
+
return df
|
| 23 |
+
|
| 24 |
+
# Build or load FAISS index
|
| 25 |
+
@st.cache_resource
|
| 26 |
+
def load_embeddings(df):
|
| 27 |
+
embed_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 28 |
+
context_list = df['context'].tolist()
|
| 29 |
+
embeddings = embed_model.encode(context_list, show_progress_bar=True)
|
| 30 |
+
|
| 31 |
+
index = faiss.IndexFlatL2(embeddings[0].shape[0])
|
| 32 |
+
index.add(embeddings)
|
| 33 |
+
|
| 34 |
+
return index, embeddings, embed_model
|
| 35 |
+
|
| 36 |
+
# Retrieve top k similar context passages
|
| 37 |
+
def retrieve_context(query, embed_model, index, df, k=3):
|
| 38 |
+
query_embedding = embed_model.encode([query])
|
| 39 |
+
D, I = index.search(query_embedding, k)
|
| 40 |
+
context_passages = df.iloc[I[0]]['context'].tolist()
|
| 41 |
+
return context_passages
|
| 42 |
+
|
| 43 |
+
# Ask Groq LLM
|
| 44 |
+
def ask_groq(query, context):
|
| 45 |
+
prompt = f"""You are a helpful assistant. Use the provided context to answer the question.
|
| 46 |
+
|
| 47 |
+
Context:
|
| 48 |
+
{context}
|
| 49 |
+
|
| 50 |
+
Question:
|
| 51 |
+
{query}
|
| 52 |
+
|
| 53 |
+
Answer:"""
|
| 54 |
+
response = client.chat.completions.create(
|
| 55 |
+
messages=[{"role": "user", "content": prompt}],
|
| 56 |
+
model=MODEL_NAME
|
| 57 |
+
)
|
| 58 |
+
return response.choices[0].message.content
|
| 59 |
+
|
| 60 |
+
# Streamlit UI
|
| 61 |
+
st.title("π RAG App with Groq API")
|
| 62 |
+
st.markdown("Use this Retrieval-Augmented Generation app to ask enterprise, legal, and financial questions.")
|
| 63 |
+
|
| 64 |
+
df = load_data()
|
| 65 |
+
index, embeddings, embed_model = load_embeddings(df)
|
| 66 |
+
|
| 67 |
+
sample_queries = df['query'].dropna().unique().tolist()
|
| 68 |
+
|
| 69 |
+
query = st.text_input("Enter your question:", "")
|
| 70 |
+
if st.button("Use Random Sample"):
|
| 71 |
+
import random
|
| 72 |
+
query = random.choice(sample_queries)
|
| 73 |
+
st.session_state["query"] = query
|
| 74 |
+
st.experimental_rerun()
|
| 75 |
+
|
| 76 |
+
if query:
|
| 77 |
+
st.markdown(f"**Your Query:** {query}")
|
| 78 |
+
with st.spinner("Retrieving relevant context..."):
|
| 79 |
+
contexts = retrieve_context(query, embed_model, index, df)
|
| 80 |
+
combined_context = "\n\n".join(contexts)
|
| 81 |
+
with st.spinner("Getting answer from Groq..."):
|
| 82 |
+
answer = ask_groq(query, combined_context)
|
| 83 |
+
st.markdown("### π‘ Answer")
|
| 84 |
+
st.write(answer)
|
| 85 |
+
st.markdown("### π Retrieved Context")
|
| 86 |
+
for i, ctx in enumerate(contexts, 1):
|
| 87 |
+
st.markdown(f"**Context {i}:**")
|
| 88 |
+
st.write(ctx)
|