File size: 5,266 Bytes
7a11626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import torch

from my.utils import tqdm
from my.utils.seed import seed_everything

from run_img_sampling import SD, StableDiffusion
from misc import torch_samps_to_imgs
from pose import PoseConfig

from run_nerf import VoxConfig
from voxnerf.utils import every
from voxnerf.vis import stitch_vis, bad_vis as nerf_vis

from run_sjc import render_one_view

device_glb = torch.device("cuda")

@torch.no_grad()
def evaluate(score_model, vox, poser):
    H, W = poser.H, poser.W
    vox.eval()
    K, poses = poser.sample_test(100)

    aabb = vox.aabb.T.cpu().numpy()
    vox = vox.to(device_glb)

    num_imgs = len(poses)

    for i in (pbar := tqdm(range(num_imgs))):

        pose = poses[i]
        y, depth = render_one_view(vox, aabb, H, W, K, pose)
        if isinstance(score_model, StableDiffusion):
            y = score_model.decode(y)
        pane, img, depth = vis_routine(y, depth)

    # metric.put_artifact(
    #     "view_seq", ".mp4",
    #     lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "view")[1])
    # )

def vis_routine(y, depth):
    pane = nerf_vis(y, depth, final_H=256)
    im = torch_samps_to_imgs(y)[0]
    depth = depth.cpu().numpy()
    return pane, im, depth


if __name__ == "__main__":
    # cfgs = {'gddpm': {'model': 'm_lsun_256', 'lsun_cat': 'bedroom', 'imgnet_cat': -1}, 'sd': {'variant': 'v1', 'v2_highres': False, 'prompt': 'A high quality photo of a delicious burger', 'scale': 100.0, 'precision': 'autocast'}, 'lr': 0.05, 'n_steps': 10000, 'emptiness_scale': 10, 'emptiness_weight': 10000, 'emptiness_step': 0.5, 'emptiness_multiplier': 20.0, 'depth_weight': 0, 'var_red': True}
    pose = PoseConfig(rend_hw=64, FoV=60.0, R=1.5)
    poser = pose.make()
    sd_model = SD(variant='v1', v2_highres=False, prompt='A high quality photo of a delicious burger', scale=100.0, precision='autocast')
    model = sd_model.make()
    vox  = VoxConfig(
            model_type="V_SD", grid_size=100, density_shift=-1.0, c=4,
            blend_bg_texture=True, bg_texture_hw=4,
            bbox_len=1.0)
    vox = vox.make()

    lr = 0.05
    n_steps = 10000
    emptiness_scale = 10
    emptiness_weight = 10000
    emptiness_step = 0.5
    emptiness_multiplier = 20.0
    depth_weight = 0
    var_red = True

    assert model.samps_centered()
    _, target_H, target_W = model.data_shape()
    bs = 1
    aabb = vox.aabb.T.cpu().numpy()
    vox = vox.to(device_glb)
    opt = torch.optim.Adamax(vox.opt_params(), lr=lr)

    H, W = poser.H, poser.W
    Ks, poses, prompt_prefixes = poser.sample_train(n_steps)

    ts = model.us[30:-10]

    same_noise = torch.randn(1, 4, H, W, device=model.device).repeat(bs, 1, 1, 1)

    with tqdm(total=n_steps) as pbar:
        for i in range(n_steps):

            p = f"{prompt_prefixes[i]} {model.prompt}"
            score_conds = model.prompts_emb([p])

            y, depth, ws = render_one_view(vox, aabb, H, W, Ks[i], poses[i], return_w=True)

            if isinstance(model, StableDiffusion):
                pass
            else:
                y = torch.nn.functional.interpolate(y, (target_H, target_W), mode='bilinear')

            opt.zero_grad()

            with torch.no_grad():
                chosen_σs = np.random.choice(ts, bs, replace=False)
                chosen_σs = chosen_σs.reshape(-1, 1, 1, 1)
                chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32)
                # chosen_σs = us[i]

                noise = torch.randn(bs, *y.shape[1:], device=model.device)

                zs = y + chosen_σs * noise
                Ds = model.denoise(zs, chosen_σs, **score_conds)

                if var_red:
                    grad = (Ds - y) / chosen_σs
                else:
                    grad = (Ds - zs) / chosen_σs

                grad = grad.mean(0, keepdim=True)

            y.backward(-grad, retain_graph=True)

            if depth_weight > 0:
                center_depth = depth[7:-7, 7:-7]
                border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50)
                center_depth_mean = center_depth.mean()
                depth_diff = center_depth_mean - border_depth_mean
                depth_loss = - torch.log(depth_diff + 1e-12)
                depth_loss = depth_weight * depth_loss
                depth_loss.backward(retain_graph=True)

            emptiness_loss = torch.log(1 + emptiness_scale * ws).mean()
            emptiness_loss = emptiness_weight * emptiness_loss
            if emptiness_step * n_steps <= i:
                emptiness_loss *= emptiness_multiplier
            emptiness_loss.backward()

            opt.step()


            # metric.put_scalars(**tsr_stats(y))

            if every(pbar, percent=1):
                with torch.no_grad():
                    if isinstance(model, StableDiffusion):
                        y = model.decode(y)
                    pane, img, depth = vis_routine(y, depth)

            # TODO: Output pane, img and depth to Gradio

            pbar.update()
            pbar.set_description(p)

        # TODO: Save Checkpoint
        ckpt = vox.state_dict()
        # evaluate(model, vox, poser)

        # TODO: Add code to stitch together the images and save them to a video