import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load both translation models from Hugging Face # English to Moroccan Arabic (Darija) tokenizer_eng_to_darija = AutoTokenizer.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") model_eng_to_darija = AutoModelForSeq2SeqLM.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") # Moroccan Arabic (Darija) to Modern Standard Arabic (MSA) tokenizer_darija_to_msa = AutoTokenizer.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") model_darija_to_msa = AutoModelForSeq2SeqLM.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, translation_choice: str, ): """ Responds to the input message by selecting the translation model based on the user's choice. """ messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: # User message messages.append({"role": "user", "content": val[0]}) if val[1]: # Assistant message messages.append({"role": "assistant", "content": val[1]}) # Append the user message messages.append({"role": "user", "content": message}) # Initialize the response variable response = "" # Translate based on the user's choice if translation_choice == "Moroccan Arabic to MSA": # Translate Moroccan Arabic (Darija) to Modern Standard Arabic inputs = tokenizer_darija_to_msa(message, return_tensors="pt", padding=True) outputs = model_darija_to_msa.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True) response = tokenizer_darija_to_msa.decode(outputs[0], skip_special_tokens=True) elif translation_choice == "English to Moroccan Arabic": # Translate English to Moroccan Arabic (Darija) inputs = tokenizer_eng_to_darija(message, return_tensors="pt", padding=True) outputs = model_eng_to_darija.generate(inputs["input_ids"], num_beams=5, max_length=512, early_stopping=True) response = tokenizer_eng_to_darija.decode(outputs[0], skip_special_tokens=True) return response # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Dropdown( label="Choose Translation Direction", choices=["English to Moroccan Arabic", "Moroccan Arabic to MSA"], value="English to Moroccan Arabic" ), ], ) if __name__ == "__main__": demo.launch()