import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load both translation models from Hugging Face # English to Moroccan Arabic (Darija) tokenizer_eng_to_darija = AutoTokenizer.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") model_eng_to_darija = AutoModelForSeq2SeqLM.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") # Moroccan Arabic (Darija) to Modern Standard Arabic (MSA) tokenizer_darija_to_msa = AutoTokenizer.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") model_darija_to_msa = AutoModelForSeq2SeqLM.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, translation_choice: str, ): # Ensure there's no empty input if not message.strip(): return "Error: Please enter a valid text to translate." # Initialize the response variable response = "" # Translate based on the user's choice try: if translation_choice == "Moroccan Arabic to MSA": # Translate Moroccan Arabic (Darija) to Modern Standard Arabic inputs = tokenizer_darija_to_msa(message, return_tensors="pt", padding=True) outputs = model_darija_to_msa.generate(inputs["input_ids"], num_beams=5, max_length=max_tokens, early_stopping=True) response = tokenizer_darija_to_msa.decode(outputs[0], skip_special_tokens=True) elif translation_choice == "English to Moroccan Arabic": # Translate English to Moroccan Arabic (Darija) inputs = tokenizer_eng_to_darija(message, return_tensors="pt", padding=True) outputs = model_eng_to_darija.generate(inputs["input_ids"], num_beams=5, max_length=max_tokens, early_stopping=True) response = tokenizer_eng_to_darija.decode(outputs[0], skip_special_tokens=True) except Exception as e: response = f"Error occurred: {str(e)}" return response # Gradio interface setup without pre-filled system message demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(value="", label="Enter Your Text", placeholder="Type your sentence here..."), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Dropdown( label="Choose Translation Direction", choices=["English to Moroccan Arabic", "Moroccan Arabic to MSA"], value="English to Moroccan Arabic" ), ], outputs="text" ) # Launch the interface demo.launch()