Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load both translation models from Hugging Face | |
tokenizer_eng_to_darija = AutoTokenizer.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") | |
model_eng_to_darija = AutoModelForSeq2SeqLM.from_pretrained("lachkarsalim/Helsinki-translation-English_Moroccan-Arabic") | |
tokenizer_darija_to_msa = AutoTokenizer.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") | |
model_darija_to_msa = AutoModelForSeq2SeqLM.from_pretrained("Saidtaoussi/AraT5_Darija_to_MSA") | |
# Translation functions | |
def translate_darija_to_msa(darija_text): | |
inputs = tokenizer_darija_to_msa(darija_text, return_tensors="pt", padding=True) | |
translated = model_darija_to_msa.generate(**inputs) | |
translated_text = tokenizer_darija_to_msa.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
def translate_eng_to_darija(eng_text, direction="eng_to_darija"): | |
if direction == "eng_to_darija": | |
inputs = tokenizer_eng_to_darija(eng_text, return_tensors="pt", padding=True) | |
translated = model_eng_to_darija.generate(**inputs) | |
translated_text = tokenizer_eng_to_darija.decode(translated[0], skip_special_tokens=True) | |
else: | |
# Reverse translation (Darija to English) | |
inputs = tokenizer_eng_to_darija(eng_text, return_tensors="pt", padding=True) | |
translated = model_eng_to_darija.generate(**inputs) | |
translated_text = tokenizer_eng_to_darija.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
# Respond function | |
def respond(message, translation_choice): | |
if translation_choice == "Moroccan Arabic to MSA": | |
return translate_darija_to_msa(message) | |
elif translation_choice == "English to Moroccan Arabic": | |
return translate_eng_to_darija(message, direction="eng_to_darija") | |
# Gradio Interface Layout with organized components | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
# Header with emojis and logo | |
gr.Markdown(""" | |
<h1 style="text-align: center;"> | |
π²π¦ π Moroccan Arabic Translation Demo π | |
</h1> | |
<p style="text-align: center;"> | |
π Dima Meghrib π <br> | |
Select the translation direction and type your text. <br> | |
Get quick translations between **English** and **Moroccan Arabic (Darija)** or **Darija to Modern Standard Arabic (MSA)**! π₯ | |
</p> | |
<p style="text-align: center;"> | |
This demo uses two advanced models:<br> | |
- English to Moroccan Arabic (Darija)<br> | |
- Moroccan Arabic (Darija) to Modern Standard Arabic (MSA)<br> | |
Choose your desired translation direction and get started!<br> | |
</p> | |
<p style="text-align: center;"> | |
<img src="https://moroccan-culture-image.s3.eu-north-1.amazonaws.com/2159558.png" | |
style="width: 150px; display: block; margin: 20px auto;" alt="Moroccan Flag" /> | |
</p> | |
""") | |
# Translation Inputs and Outputs | |
user_input = gr.Textbox(label="Enter Your Text", placeholder="Type your sentence here...") | |
translation_choice = gr.Dropdown( | |
label="Choose Translation Direction", | |
choices=["English to Moroccan Arabic", "Moroccan Arabic to MSA"], | |
value="English to Moroccan Arabic" | |
) | |
submit_button = gr.Button("Submit", elem_id="submit_button") | |
with gr.Row(): | |
# Output area for translated text | |
output = gr.Textbox(label="Translated Text", placeholder="Translation will appear here...") | |
# Footer with your name at the bottom | |
gr.Markdown("<p style='text-align: center; font-size: 14px;'>Created by Eng Amal π</p>") | |
# Define the action for submit | |
submit_button.click(fn=respond, inputs=[user_input, translation_choice], outputs=output) | |
# Launch the interface | |
demo.launch() | |