Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -202,23 +202,24 @@ def resample_waveform(waveform, original_sample_rate, target_sample_rate):
|
|
202 |
# segments.append(waveform)
|
203 |
|
204 |
# return segments
|
205 |
-
def split_audio(waveform, sample_rate):
|
206 |
-
segment_samples = segment_duration * sample_rate
|
207 |
-
total_samples = waveform.size(0)
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
waveform = torch.nn.functional.pad(waveform, (0, pad_size))
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
segment = waveform[start:end]
|
219 |
-
segments.append(segment)
|
220 |
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
# def split_audio(waveform, sample_rate, segment_duration=10):
|
224 |
# segment_samples = segment_duration * sample_rate
|
@@ -239,23 +240,23 @@ def split_audio(waveform, sample_rate):
|
|
239 |
|
240 |
# return segments
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
|
253 |
-
#
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
|
258 |
-
|
259 |
|
260 |
|
261 |
def safe_remove_dir(directory):
|
@@ -380,8 +381,14 @@ class Music2emo:
|
|
380 |
waveform = waveform.mean(dim=0).unsqueeze(0)
|
381 |
waveform = waveform.squeeze()
|
382 |
waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
|
383 |
-
|
384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
segments = split_audio(waveform, sample_rate)
|
386 |
for i, segment in enumerate(segments):
|
387 |
segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
|
@@ -389,6 +396,15 @@ class Music2emo:
|
|
389 |
else:
|
390 |
segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
|
391 |
self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
embeddings = []
|
394 |
layers_to_extract = [5,6]
|
|
|
202 |
# segments.append(waveform)
|
203 |
|
204 |
# return segments
|
|
|
|
|
|
|
205 |
|
206 |
+
# def split_audio(waveform, sample_rate):
|
207 |
+
# segment_samples = segment_duration * sample_rate
|
208 |
+
# total_samples = waveform.size(0)
|
|
|
209 |
|
210 |
+
# # Pad if shorter than one segment
|
211 |
+
# if total_samples < segment_samples:
|
212 |
+
# pad_size = segment_samples - total_samples
|
213 |
+
# waveform = torch.nn.functional.pad(waveform, (0, pad_size))
|
|
|
|
|
214 |
|
215 |
+
# segments = []
|
216 |
+
# for start in range(0, waveform.size(0), segment_samples):
|
217 |
+
# end = start + segment_samples
|
218 |
+
# if end <= waveform.size(0):
|
219 |
+
# segment = waveform[start:end]
|
220 |
+
# segments.append(segment)
|
221 |
+
|
222 |
+
# return segments
|
223 |
|
224 |
# def split_audio(waveform, sample_rate, segment_duration=10):
|
225 |
# segment_samples = segment_duration * sample_rate
|
|
|
240 |
|
241 |
# return segments
|
242 |
|
243 |
+
def split_audio(waveform, sample_rate):
|
244 |
+
segment_samples = segment_duration * sample_rate
|
245 |
+
total_samples = waveform.size(0)
|
246 |
|
247 |
+
segments = []
|
248 |
+
for start in range(0, total_samples, segment_samples):
|
249 |
+
end = start + segment_samples
|
250 |
+
if end <= total_samples:
|
251 |
+
segment = waveform[start:end]
|
252 |
+
segments.append(segment)
|
253 |
|
254 |
+
# In case audio length is shorter than segment length.
|
255 |
+
if len(segments) == 0:
|
256 |
+
segment = waveform
|
257 |
+
segments.append(segment)
|
258 |
|
259 |
+
return segments
|
260 |
|
261 |
|
262 |
def safe_remove_dir(directory):
|
|
|
381 |
waveform = waveform.mean(dim=0).unsqueeze(0)
|
382 |
waveform = waveform.squeeze()
|
383 |
waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
|
384 |
+
|
385 |
+
|
386 |
+
# 🔍 Check duration
|
387 |
+
duration_sec = waveform.shape[-1] / sample_rate
|
388 |
+
is_split = duration_sec <= 30.0
|
389 |
+
print(f"Audio duration: {duration_sec:.2f} seconds | is_split = {is_split}")
|
390 |
+
|
391 |
+
if is_split:
|
392 |
segments = split_audio(waveform, sample_rate)
|
393 |
for i, segment in enumerate(segments):
|
394 |
segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
|
|
|
396 |
else:
|
397 |
segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
|
398 |
self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
|
399 |
+
|
400 |
+
# if is_split:
|
401 |
+
# segments = split_audio(waveform, sample_rate)
|
402 |
+
# for i, segment in enumerate(segments):
|
403 |
+
# segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
|
404 |
+
# self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
|
405 |
+
# else:
|
406 |
+
# segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
|
407 |
+
# self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
|
408 |
|
409 |
embeddings = []
|
410 |
layers_to_extract = [5,6]
|