annabeth97c's picture
feat: Update app for long audio captioning and chaining
4401dfb
raw
history blame
2.09 kB
from dataclasses import dataclass, field
import logging
from flask import Flask, request, jsonify
import transformers
import torch
from sonicverse.model_utils import MultiTaskType
from sonicverse.training import (
ModelArguments,
)
from sonicverse.inference import load_trained_lora_model
from sonicverse.data_tools import encode_chat
@dataclass
class ServeArguments(ModelArguments):
port: int = field(default=8080)
host: str = field(default="0.0.0.0")
load_bits: int = field(default=16)
max_new_tokens: int = field(default=128)
temperature: float = field(default=0.01)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
parser = transformers.HfArgumentParser((ServeArguments,))
serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
model, tokenizer = load_trained_lora_model(
model_name_or_path=serve_args.model_name_or_path,
model_lora_path=serve_args.model_lora_path,
load_bits=serve_args.load_bits,
use_multi_task=MultiTaskType(serve_args.use_multi_task),
tasks_config=serve_args.tasks_config
)
app = Flask(__name__)
@app.route("/generate", methods=["POST"])
def generate():
req_json = request.get_json()
encoded_dict = encode_chat(req_json, tokenizer, model.modalities)
with torch.inference_mode():
output_ids = model.generate(
input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device),
max_new_tokens=serve_args.max_new_tokens,
use_cache=True,
do_sample=True,
temperature=serve_args.temperature,
modality_inputs={
m.name: [encoded_dict[m.name]] for m in model.modalities
},
)
outputs = tokenizer.decode(
output_ids[0, encoded_dict["input_ids"].shape[0] :],
skip_special_tokens=True,
).strip()
return jsonify({"output": outputs})
app.run(host=serve_args.host, port=serve_args.port)