SonicVerse / src /sonicverse /scripts /evaluate_mullama.py
annabeth97c's picture
feat: Update app for long audio captioning and chaining
4401dfb
raw
history blame
4.38 kB
from dataclasses import dataclass, field
import logging
from flask import Flask, request, jsonify
import transformers
import torch
from datasets import load_from_disk
from sonicverse.model_utils import MultiTaskType
from sonicverse.training import ModelArguments
from sonicverse.inference import load_trained_lora_model
from sonicverse.data_tools import encode_chat
import evaluate
import random
import bert_score
PRETRAIN_PHRASES = [
"What is happening in the given music <sound>?",
"Describe the sound. <sound>",
"Describe the music. <sound>",
"<sound> Provide a description of the music.",
"<sound> Provide a description of the sound.",
"Can you interpret <sound>?",
"Please explain what's happening in <sound>",
"What does <sound> represent?",
"Could you describe <sound> for me?",
"What's the content of <sound>?",
"Can you depict <sound>?",
"What is <sound>?",
"In the music clip, <sound>, what is happening?",
"Provide a description of the music. <sound>",
"Provide a description of the sound. <sound>",
"Provide a caption for the sound. <sound>",
"Provide a caption for the music. <sound>",
]
@dataclass
class ServeArguments(ModelArguments):
port: int = field(default=8080)
host: str = field(default="0.0.0.0")
load_bits: int = field(default=16)
max_new_tokens: int = field(default=128)
temperature: float = field(default=0.01)
def generate(input_json):
encoded_dict = encode_chat(input_json, tokenizer, model.modalities)
with torch.inference_mode():
output_ids = model.generate(
input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device),
max_new_tokens=serve_args.max_new_tokens,
use_cache=True,
do_sample=True,
temperature=serve_args.temperature,
modality_inputs={
m.name: [encoded_dict[m.name]] for m in model.modalities
},
)
outputs = tokenizer.decode(
output_ids[0, encoded_dict["input_ids"].shape[0]:],
skip_special_tokens=True,
).strip()
return {"output": outputs}
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
parser = transformers.HfArgumentParser((ServeArguments,))
serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
dataset_path = "/data/musicbench_multitoken_official_split/val"
ds = load_from_disk(dataset_path)
# Load MU-LLaMA model and tokenizer
model_name_or_path = "mu-llama/MU-LLaMA"
model = transformers.LlamaForCausalLM.from_pretrained(model_name_or_path)
tokenizer = transformers.LlamaTokenizer.from_pretrained(model_name_or_path)
predictions = []
references = []
content_phrase = random.choice(PRETRAIN_PHRASES)
for data_point_id in range(100):
data_point = ds[data_point_id]
input_json = {"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]}
output_json = generate(input_json)
print("Prediction ", output_json["output"])
print("Reference ", data_point["messages"][1]["content"])
print()
print()
predictions.append(output_json["output"])
references.append(data_point["messages"][1]["content"])
# Load evaluation metrics
bleu = evaluate.load("bleu")
meteor = evaluate.load("meteor")
rouge = evaluate.load("rouge")
# Compute BLEU scores
bleu_results = bleu.compute(predictions=predictions, references=references, max_order=4)
# bleu_score = sum(bleu_results[f"bleu{i}"] for i in range(1, 5)) / 4
print(bleu_results)
# Compute METEOR score
meteor_results = meteor.compute(predictions=predictions, references=references)
meteor_score = meteor_results["meteor"]
# Compute ROUGE-L score
rouge_results = rouge.compute(predictions=predictions, references=references, rouge_types=["rougeL"])
#rouge_l_score = rouge_results["rougeL"].mid.fmeasure
print(rouge_results)
# Compute BERT-Score
P, R, F1 = bert_score.score(predictions, references, lang="en", rescale_with_baseline=True)
bert_score_f1 = F1.mean().item()
# Print results
# print(f"BLEU Score: {bleu_score}")
print(f"METEOR Score: {meteor_score}")
# print(f"ROUGE-L Score: {rouge_l_score}")
print(f"BERT-Score F1: {bert_score_f1}")