SonicVerse / src /sonicverse /scripts /evaluate_model_mullama.py
annabeth97c's picture
feat: Update app for long audio captioning and chaining
4401dfb
raw
history blame
6.48 kB
from dataclasses import dataclass, field
import logging
from flask import Flask, request, jsonify
import transformers
import torch
from datasets import load_from_disk
from sonicverse.model_utils import MultiTaskType
from sonicverse.training import ModelArguments
from sonicverse.inference import load_trained_lora_model
from sonicverse.data_tools import encode_chat
import evaluate
import random
import bert_score
from tqdm import tqdm
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu
from nltk.translate.meteor_score import meteor_score as meteor_scorer
from nltk.tokenize import wordpunct_tokenize
import json
from bert_score import score
from tqdm.auto import tqdm
import yaml
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
PRETRAIN_PHRASES_OLD = [
"Describe the audio in detail"
]
PRETRAIN_PHRASES = [
"What is happening in the given music <sound>?",
"Describe the sound. <sound>",
"Describe the music. <sound>",
"<sound> Provide a description of the music.",
"<sound> Provide a description of the sound.",
"Can you interpret <sound>?",
"Please explain what's happening in <sound>",
"What does <sound> represent?",
"Could you describe <sound> for me?",
"What's the content of <sound>?",
"Can you depict <sound>?",
"What is <sound>?",
"In the music clip, <sound>, what is happening?",
"Provide a description of the music. <sound>",
"Provide a description of the sound. <sound>",
"Provide a caption for the sound. <sound>",
"Provide a caption for the music. <sound>",
]
random.seed(1234)
@dataclass
class ServeArguments(ModelArguments):
port: int = field(default=8080)
host: str = field(default="0.0.0.0")
load_bits: int = field(default=16)
max_new_tokens: int = field(default=128)
temperature: float = field(default=0.01)
def generate(input_json):
encoded_dict = encode_chat(input_json, tokenizer, model.modalities)
with torch.inference_mode():
output_ids = model.generate(
input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device),
max_new_tokens=serve_args.max_new_tokens,
use_cache=True,
do_sample=True,
temperature=serve_args.temperature,
modality_inputs={
m.name: [encoded_dict[m.name]] for m in model.modalities
},
)
outputs = tokenizer.decode(
output_ids[0, encoded_dict["input_ids"].shape[0]:],
skip_special_tokens=True,
).strip()
return {"output": outputs}
def evaluate(candidates, mult_reference):
rouge_score, bleu_score, bleu4_score, meteor_score = 0, 0, 0, 0
for ref, cand in tqdm(zip(mult_reference, candidates), total=len(mult_reference)):
rouge_score += scorer.score(ref, cand)['rougeL'].recall
cand_split = wordpunct_tokenize(cand)
ref_split = wordpunct_tokenize(ref)
bleu4_score += sentence_bleu([ref], cand, weights=(0.0, 0.0, 0.0, 1.0))
bleu_score += sentence_bleu([ref], cand)
meteor_score += meteor_scorer([ref_split], cand_split)
rouge_score, bleu_score, bleu4_score, meteor_score = rouge_score / (len(candidates)), bleu_score / (len(candidates)), bleu4_score / (len(candidates)), meteor_score / (len(candidates))
P, R, F1 = score(candidates, mult_reference, lang="en", verbose=True)
bert_score = R.mean().item()
#print(f"Model: {model_name}")
print(f"BLEU Score: {bleu_score}")
print(f"BLEU-4 Score: {bleu4_score}")
print(f"METEOR Score: {meteor_score}")
print(f"ROUGE Score: {rouge_score}")
print(f"BERT Score: {bert_score}")
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
parser = transformers.HfArgumentParser((ServeArguments,))
serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
dataset_path = "/data/musicbench_multitoken_official_split/val"
ds = load_from_disk(dataset_path)
shuffled_ds = ds.shuffle(seed=1234)
model, tokenizer = load_trained_lora_model(
model_name_or_path=serve_args.model_name_or_path,
model_lora_path=serve_args.model_lora_path,
load_bits=serve_args.load_bits,
use_multi_task=MultiTaskType(serve_args.use_multi_task),
tasks_config=serve_args.tasks_config
)
predictions = []
references = []
content_phrase = random.choice(PRETRAIN_PHRASES)
# for data_point_id in range(len(ds)):
print("len(ds)", len(ds))
for data_point_id in tqdm(range(100)):
# for data_point_id in tqdm(range(6831)):
data_point = shuffled_ds[data_point_id]
input_json = {"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]}
output_json = generate(input_json)
# print("Prediction ", output_json["output"])
# print("Reference ", data_point["messages"][1]["content"])
# print()
# print()
predictions.append(output_json["output"])
references.append(data_point["messages"][1]["content"])
pairs = {"predictions": predictions, "references": references}
evaluate(predictions, references)
# with open('/experiments/captioning/mert_tasks_separate_backbone_train_001_ft/checkpoint_1985_test/val_2.yaml', 'w') as file:
# yaml.dump(pairs, file, default_flow_style=False)
# Load evaluation metrics
# bleu = evaluate.load("bleu")
# meteor = evaluate.load("meteor")
# rouge = evaluate.load("rouge")
# Compute BLEU scores
# bleu_results = bleu.compute(predictions=predictions, references=references, max_order=4)
# print(bleu_results)
#bleu_score = sum(bleu_results[f"bleu{i}"] for i in range(1, 5)) / 4
# Compute METEOR score
# meteor_results = meteor.compute(predictions=predictions, references=references)
# meteor_score = meteor_results["meteor"]
# Compute ROUGE-L score
# rouge_results = rouge.compute(predictions=predictions, references=references, rouge_types=["rougeL"])
# rouge_l_score = rouge_results["rougeL"].mid.fmeasure
# print(rouge_results)
# Compute BERT-Score
# P, R, F1 = bert_score.score(predictions, references, lang="en", rescale_with_baseline=True)
# bert_score_f1 = F1.mean().item()
# Print results
#print(f"BLEU Score: {bleu_score}")
# print(f"METEOR Score: {meteor_score}")
# print(f"ROUGE-L Score: {rouge_l_score}")
# print(f"BERT-Score F1: {bert_score_f1}")