Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass, field | |
import logging | |
import sys | |
sys.path.append("/home/user/app/src/sonicverse") | |
from huggingface_hub import login | |
import os | |
hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
if not hf_token: | |
raise ValueError("Missing HUGGINGFACE_HUB_TOKEN. Set it as a secret in your Space.") | |
login(token=hf_token) | |
import gradio as gr | |
import torch | |
import transformers | |
import torchaudio | |
from multi_token.model_utils import MultiTaskType | |
from multi_token.training import ModelArguments | |
from multi_token.inference import load_trained_lora_model | |
from multi_token.data_tools import encode_chat | |
class ServeArguments(ModelArguments): | |
load_bits: int = field(default=16) | |
max_new_tokens: int = field(default=128) | |
temperature: float = field(default=0.01) | |
# Load arguments and model | |
logging.getLogger().setLevel(logging.INFO) | |
parser = transformers.HfArgumentParser((ServeArguments,)) | |
serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True) | |
model, tokenizer = load_trained_lora_model( | |
model_name_or_path=serve_args.model_name_or_path, | |
model_lora_path=serve_args.model_lora_path, | |
load_bits=serve_args.load_bits, | |
use_multi_task=MultiTaskType(serve_args.use_multi_task), | |
tasks_config=serve_args.tasks_config | |
) | |
def generate_caption(audio_file): | |
# waveform, sample_rate = torchaudio.load(audio_file) | |
req_json = { | |
"messages": [ | |
{"role": "user", "content": "Describe the music. <sound>"} | |
], | |
"sounds": [audio_file] | |
} | |
encoded_dict = encode_chat(req_json, tokenizer, model.modalities) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device), | |
max_new_tokens=serve_args.max_new_tokens, | |
use_cache=True, | |
do_sample=True, | |
temperature=serve_args.temperature, | |
modality_inputs={ | |
m.name: [encoded_dict[m.name]] for m in model.modalities | |
}, | |
) | |
outputs = tokenizer.decode( | |
output_ids[0, encoded_dict["input_ids"].shape[0]:], | |
skip_special_tokens=True | |
).strip() | |
return outputs | |
demo = gr.Interface( | |
fn=generate_caption, | |
inputs=gr.Audio(type="filepath", label="Upload an audio file"), | |
outputs=gr.Textbox(label="Generated Caption"), | |
title="SonicVerse", | |
description="Upload an audio file to generate a caption using SonicVerse" | |
) | |
if __name__ == "__main__": | |
demo.launch() |