Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# #import torch | |
# import yolov7 | |
# # | |
# # from huggingface_hub import hf_hub_download | |
# from huggingface_hub import HfApi | |
# # Images | |
# #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') | |
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') | |
# def yolov7_inference( | |
# image: gr.inputs.Image = None, | |
# model_path: gr.inputs.Dropdown = None, | |
# image_size: gr.inputs.Slider = 640, | |
# conf_threshold: gr.inputs.Slider = 0.25, | |
# iou_threshold: gr.inputs.Slider = 0.45, | |
# ): | |
# """ | |
# YOLOv7 inference function | |
# Args: | |
# image: Input image | |
# model_path: Path to the model | |
# image_size: Image size | |
# conf_threshold: Confidence threshold | |
# iou_threshold: IOU threshold | |
# Returns: | |
# Rendered image | |
# """ | |
# model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False) | |
# model.conf = conf_threshold | |
# model.iou = iou_threshold | |
# results = model([image], size=image_size) | |
# return results.render()[0] | |
# inputs = [ | |
# gr.inputs.Image(type="pil", label="Input Image"), | |
# gr.inputs.Dropdown( | |
# choices=[ | |
# "alshimaa/model_baseline", | |
# "alshimaa/model_yolo7", | |
# #"kadirnar/yolov7-v0.1", | |
# ], | |
# default="alshimaa/model_baseline", | |
# label="Model", | |
# ) | |
# #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size") | |
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold") | |
# ] | |
# outputs = gr.outputs.Image(type="filepath", label="Output Image") | |
# title = "Smart Environmental Eye (SEE)" | |
# examples = [['image1.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45]] | |
# demo_app = gr.Interface( | |
# fn=yolov7_inference, | |
# inputs=inputs, | |
# outputs=outputs, | |
# title=title, | |
# examples=examples, | |
# cache_examples=True, | |
# theme='huggingface', | |
# ) | |
# demo_app.launch(debug=True, enable_queue=True) | |
import subprocess | |
import tempfile | |
import time | |
from pathlib import Path | |
import cv2 | |
import gradio as gr | |
from inferer import Inferer | |
pipeline = Inferer("alshimaa/model_baseline", device='cuda') | |
def fn_image(image, conf_thres, iou_thres): | |
return pipeline(image, conf_thres, iou_thres) | |
def fn_video(video_file, conf_thres, iou_thres, start_sec, duration): | |
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec)) | |
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration)) | |
suffix = Path(video_file).suffix | |
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix) | |
subprocess.call( | |
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split() | |
) | |
# Reader of clip file | |
cap = cv2.VideoCapture(clip_temp_file.name) | |
# This is an intermediary temp file where we'll write the video to | |
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness | |
# with ffmpeg at the end of the function here. | |
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file: | |
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720)) | |
num_frames = 0 | |
max_frames = duration * 30 | |
while cap.isOpened(): | |
try: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
except Exception as e: | |
print(e) | |
continue | |
print("FRAME DTYPE", type(frame)) | |
out.write(pipeline(frame, conf_thres, iou_thres)) | |
num_frames += 1 | |
print("Processed {} frames".format(num_frames)) | |
if num_frames == max_frames: | |
break | |
out.release() | |
# Aforementioned hackiness | |
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False) | |
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split()) | |
return out_file.name | |
image_interface = gr.Interface( | |
fn=fn_image, | |
inputs=[ | |
"image", | |
gr.Slider(0, 1, value=0.5, label="Confidence Threshold"), | |
gr.Slider(0, 1, value=0.5, label="IOU Threshold"), | |
], | |
outputs=gr.Image(type="file"), | |
examples=[["image1.jpg", 0.5, 0.5], ["image2.jpg", 0.25, 0.45], ["image3.jpg", 0.25, 0.45]], | |
title="Smart Environmental Eye (SEE)", | |
allow_flagging=False, | |
allow_screenshot=False, | |
) | |
video_interface = gr.Interface( | |
fn=fn_video, | |
inputs=[ | |
gr.Video(type="file"), | |
gr.Slider(0, 1, value=0.25, label="Confidence Threshold"), | |
gr.Slider(0, 1, value=0.45, label="IOU Threshold"), | |
gr.Slider(0, 10, value=0, label="Start Second", step=1), | |
gr.Slider(0, 10 if pipeline.device.type != 'cpu' else 3, value=4, label="Duration", step=1), | |
], | |
outputs=gr.Video(type="file", format="mp4"), | |
# examples=[ | |
# ["video.mp4", 0.25, 0.45, 0, 2], | |
# ], | |
title="Smart Environmental Eye (SEE)", | |
allow_flagging=False, | |
allow_screenshot=False, | |
) | |
if __name__ == "__main__": | |
gr.TabbedInterface( | |
[image_interface, video_interface], | |
["Run on Images", "Run on Videos"], | |
).launch() | |