Spaces:
Sleeping
Sleeping
File size: 2,257 Bytes
c0892d3 86f489c c0892d3 114c1f0 dfe8c33 c0892d3 114c1f0 c0892d3 86f489c c0892d3 c824d7a c0892d3 d334981 c0892d3 d334981 c0892d3 ffe4d9f e42513a 73b78d3 c0892d3 c824d7a c0892d3 8c6eafc 36ced1e c0892d3 150fa49 23e5a52 c0892d3 5694e2c c0892d3 e42513a c0892d3 150fa49 c0892d3 150fa49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
#import torch
import yolov7
#
# from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi
# Images
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
def yolov7_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv7 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
model.conf = conf_threshold
model.iou = iou_threshold
results = model([image], size=image_size)
return results.render()[0]
inputs = [
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Dropdown(
choices=[
"alshimaa/model_baseline",
"alshimaa/model_yolo7",
#"kadirnar/yolov7-v0.1",
],
default="alshimaa/model_baseline",
label="Model",
)
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "Smart Environmental Eye (SEE)"
examples = [['image1.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45]]
demo_app = gr.Interface(
fn=yolov7_inference,
inputs=inputs,
outputs=outputs,
title=title,
examples=examples,
cache_examples=True,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)
|