# tahmin çıktılarında date kolonu sadece yyyy/mm/dd şeklinde yap from dotenv import load_dotenv import os from sklearn.metrics import r2_score load_dotenv('.env') class Config(): def __init__(self): pass MJ_APIKEY_PUBLIC = os.getenv('MJ_APIKEY_PUBLIC') MJ_APIKEY_PRIVATE = os.getenv('MJ_APIKEY_PRIVATE') target = 'demand' split_local_test = False not_include_features = [ target, 'date' ] cat_features = [ 'product_id', 'product_application', 'product_marketing_name', 'product_main_family', 'planning_method_latest' ] scorer = r2_score model_type = 'CATBOOST' fold = 5 fold_models_directory = 'models/date_models_test' fold_input_directory = 'maps/date_models_test' result_path = 'demand_predictions/' catboost_params = { 'learning_rate': 0.03, 'objective':'RMSE', 'depth': 5, 'early_stopping_rounds':200, 'iterations': 2000, 'use_best_model': True, # 'eval_metric': CatBoostEvalMetricSMAPE(), 'eval_metric': 'R2', 'random_state': 42, 'allow_writing_files': False, 'thread_count':-1 } # deployment MAIN_TITLE = 'Infineon Product Demand Forecasting System' SUB_TITLE = 'Data Analytics in Applications' ICON_PATH = 'images/infineon-icon-1.png' FORECAST_START_DATE = '01-11-2023' FORECAST_END_DATE = '01-07-2024' FORECAST_BUTTON_TEXT = 'Predict' LINE_PLOT_SELECTBOX_TEXT = 'Filter at product level' BAR_PLOT_SELECTBOX_TEXT = 'Filter at category level' SAVE_CHECKBOX_TEXT = 'Save predictions' SAVE_BUTTON_TEXT = 'Apply' SAVE_BUTTON_SUCCESS_TEXT = 'Successfully Applied!'