Spaces:
Sleeping
Sleeping
# external libraries | |
import streamlit as st | |
import pandas as pd | |
import os | |
import datetime | |
from src.utils.helper_functions import send_mail | |
import pipeline | |
from config import Config | |
config = vars(Config) | |
def main(): | |
# variables | |
if "state" not in st.session_state: | |
st.session_state["state"] = True | |
st.session_state["predictions_df"] = pd.DataFrame() | |
st.session_state["send_mail"] = False | |
st.session_state["text_input"] = '' | |
st.session_state["input_date"] = None | |
st.set_page_config( | |
layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. | |
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" | |
page_title=config['MAIN_TITLE'], # String or None. Strings get appended with "• Streamlit". | |
page_icon=config['ICON_PATH'], # String, anything supported by st.image, or None. | |
) | |
col1, col2, col3 = st.columns(3) | |
col1.write(' ') | |
col2.image(config['ICON_PATH']) | |
col3.write(' ') | |
st.markdown(f"<h1 style='text-align: center;'>{config['MAIN_TITLE']}</h1>", unsafe_allow_html=True) | |
st.markdown(f"<h3 style='text-align: center;'>{config['SUB_TITLE']}</h3>", unsafe_allow_html=True) | |
if st.session_state["state"]: | |
dates = get_forecasting_horizon(config['FORECAST_START_DATE'],config['FORECAST_END_DATE']) | |
col1, col2= st.columns([100,1]) | |
input_date = col1.slider( | |
"Forecast Interval", dates[0].date(), dates[-1].date(), | |
value=(dates[0].date(),dates[0].date() + datetime.timedelta(weeks=12)), | |
step=datetime.timedelta(weeks=4)) | |
col1, col2, col3 , col4, col5 = st.columns(5) | |
with col3 : | |
center_button = st.button(config['FORECAST_BUTTON_TEXT'], on_click=predict, args=(input_date,)) | |
if not st.session_state["predictions_df"].empty: | |
pid = st.selectbox(config['LINE_PLOT_SELECTBOX_TEXT'],st.session_state["predictions_df"]['product_id'].unique()) | |
st.table(st.session_state["predictions_df"].loc[st.session_state["predictions_df"]['product_id'] == pid,['product_id','date','demand']][:10]) | |
st.write(f"Monthly demand for the product {pid}") | |
st.line_chart(st.session_state["predictions_df"].loc[st.session_state["predictions_df"]['product_id'] == pid,:], | |
x="date", y="demand", use_container_width=True) | |
category = st.selectbox(config['BAR_PLOT_SELECTBOX_TEXT'],['product_application', | |
'product_marketing_name', | |
'product_main_family', | |
'planning_method_latest']) | |
st.write(f'Average demand by category "{category}"') | |
st.bar_chart(st.session_state["predictions_df"].groupby(category)['demand'].mean()) | |
do_mail_sending = st.checkbox('Send mail') | |
if do_mail_sending: | |
# Display a text area if the checkbox is clicked | |
st.session_state["send_mail"] = do_mail_sending | |
st.session_state["text_input"] = st.text_input('Mail address:') | |
input_save = st.checkbox(config['SAVE_CHECKBOX_TEXT']) | |
confirm_params = { | |
'input_save':input_save, | |
'send_mail':do_mail_sending, | |
'email_adress': st.session_state["text_input"], | |
'forecast_start_date':st.session_state["input_date"][0].strftime("%Y/%m/%d"), | |
'forecast_end_date':st.session_state["input_date"][1].strftime("%Y/%m/%d") | |
} | |
confirm = st.button(config['SAVE_BUTTON_TEXT'], on_click=save, args=(confirm_params,)) | |
if confirm: | |
st.success(config['SAVE_BUTTON_SUCCESS_TEXT']) | |
def get_forecasting_horizon(start_date, end_date): | |
horizon = pd.date_range(start_date, | |
end_date, | |
freq='MS') | |
return horizon | |
# saving results | |
def save(params): | |
dir = 'demand_predictions' | |
if not os.path.exists(f'{dir}'): | |
os.makedirs(f'{dir}') | |
if params['input_save']: | |
today = datetime.datetime.today().strftime("%d-%m-%Y") | |
st.session_state["predictions_df"][['product_id','date','demand']].to_excel(f'{dir}/predictions_{today}.xlsx', index=False) | |
if params['send_mail']: | |
status = send_mail( | |
name='Alper Temel', | |
email=params['email_adress'], | |
subject='Forecast Results', | |
message='Hi Captain', | |
dataframe=st.session_state["predictions_df"].loc[:, ['product_id','date','demand']], | |
forecast_start_date=params['forecast_start_date'], | |
forecast_end_date=params['forecast_end_date'], | |
toMail=params['email_adress'] | |
) | |
if not status: # not successfull | |
return False | |
# forecasting | |
def predict(input_date): | |
st.session_state["input_date"] = input_date | |
forecast_start_date = input_date[0].strftime("%Y-%m-%d") | |
forecast_end_date = input_date[1].strftime("%Y-%m-%d") | |
st.session_state["predictions_df"] = pipeline.run(forecast_start_date, forecast_end_date) | |
if __name__ == "__main__": | |
main() |