Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,163 +1,16 @@
|
|
1 |
-
import
|
2 |
-
import os
|
3 |
-
from platform import system
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
from telegram import Update
|
9 |
-
from telegram.ext import ApplicationBuilder, CommandHandler, MessageHandler, filters, CallbackContext
|
10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
-
import torch
|
12 |
-
|
13 |
-
load_dotenv()
|
14 |
-
TOKEN = os.getenv("TELEGRAM_TOKEN")
|
15 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
-
MAX_LENGTH_REQUEST = 1024
|
17 |
-
MAX_NEW_TOKENS = 128
|
18 |
-
MAX_LENGTH_RESPONSE = 100
|
19 |
-
TEST_ENV=os.getenv("TEST_ENV")
|
20 |
-
|
21 |
-
# Настройка логирования
|
22 |
-
logging.basicConfig(
|
23 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
24 |
-
level=logging.INFO
|
25 |
)
|
26 |
-
logger = logging.getLogger(__name__)
|
27 |
-
|
28 |
-
logger.info(f"TEST_ENV= {TEST_ENV}")
|
29 |
-
|
30 |
-
# Логин через токен
|
31 |
-
try:
|
32 |
-
api = HfApi()
|
33 |
-
HfFolder.save_token(HF_TOKEN)
|
34 |
-
except Exception as e:
|
35 |
-
logger.error(f"Ошибка авторизации токена: {str(e)}")
|
36 |
-
raise
|
37 |
-
|
38 |
-
rugpt3large_based_on_gpt2_model_name = "ai-forever/rugpt3large_based_on_gpt2"
|
39 |
-
rugpt3small_based_on_gpt2_model_name = "ai-forever/rugpt3small_based_on_gpt2"
|
40 |
-
sber_rugpt3small_based_on_gpt2_model_name = "sberbank-ai/rugpt3small_based_on_gpt2"
|
41 |
-
phi_mini_instruct_GGUF_model_name = "bartowski/Phi-3.5-mini-instruct-GGUF"
|
42 |
-
# Инициализация модели
|
43 |
-
try:
|
44 |
-
model_name = phi_mini_instruct_GGUF_model_name # Меньшая модель
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
46 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
47 |
-
logger.info("Модель успешно загружена")
|
48 |
-
except Exception as e:
|
49 |
-
logger.error(f"Ошибка загрузки модели: {str(e)}")
|
50 |
-
raise
|
51 |
-
|
52 |
-
# Настройка устройства
|
53 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
54 |
-
model.to(device)
|
55 |
-
logger.info(f"Используемое устройство: {device}")
|
56 |
-
|
57 |
-
# Контекст диалога (упрощенная версия)
|
58 |
-
chat_contexts = {}
|
59 |
-
|
60 |
-
|
61 |
-
def get_chat_context(chat_id):
|
62 |
-
if chat_id not in chat_contexts:
|
63 |
-
chat_contexts[chat_id] = {"history": []}
|
64 |
-
return chat_contexts[chat_id]
|
65 |
-
|
66 |
-
|
67 |
-
MAX_HISTORY_LENGTH = 10
|
68 |
-
|
69 |
-
|
70 |
-
def add_to_chat_history(chat_id, user_input, bot_response):
|
71 |
-
context = get_chat_context(chat_id)
|
72 |
-
context["history"].append({"user": user_input, "bot": bot_response})
|
73 |
-
if len(context["history"]) > MAX_HISTORY_LENGTH:
|
74 |
-
context["history"] = context["history"][-MAX_HISTORY_LENGTH:]
|
75 |
-
|
76 |
-
|
77 |
-
async def start(update: Update, context: CallbackContext) -> None:
|
78 |
-
"""Обработчик команды /start"""
|
79 |
-
await update.message.reply_text('🚀 Привет! Я РУССКИЙ! :) бот.')
|
80 |
-
|
81 |
-
|
82 |
-
async def handle_message(update: Update, context: CallbackContext) -> None:
|
83 |
-
"""Обработка текстовых сообщений"""
|
84 |
-
try:
|
85 |
-
user_input = update.message.text
|
86 |
-
chat_id = update.message.chat_id
|
87 |
-
user_name = update.message.from_user.username
|
88 |
-
logger.info(f"Получено сообщение: {user_input}")
|
89 |
-
|
90 |
-
# Получаем контекст чата
|
91 |
-
context = get_chat_context(chat_id)
|
92 |
-
|
93 |
-
# Формируем входной текст с учетом истории
|
94 |
-
input_text = ""
|
95 |
-
for msg in context["history"]:
|
96 |
-
input_text += f"Пользователь: {msg['user']}\nБот: {msg['bot']}"
|
97 |
-
|
98 |
-
tokenizer.pad_token = tokenizer.eos_token
|
99 |
-
# Генерация промта
|
100 |
-
system_prompt = "Ответ должен быть точным и кратким."
|
101 |
-
# system_prompt = ""
|
102 |
-
# prompt = f"{system_prompt} Вопрос: {user_input}; Ответ: "
|
103 |
-
prompt = f"{system_prompt}\n {user_input}\n"
|
104 |
-
logger.info(f"Промт: {prompt}")
|
105 |
-
|
106 |
-
# Генерация ответа
|
107 |
-
inputs = tokenizer(
|
108 |
-
prompt,
|
109 |
-
return_tensors="pt", # Возвращает PyTorch тензоры
|
110 |
-
# truncation=True, # Обрезает текст, если он превышает max_length
|
111 |
-
# add_special_tokens=True, # Добавляет специальные токены (например, [CLS], [SEP])
|
112 |
-
).to(device)
|
113 |
-
|
114 |
-
outputs = model.generate(
|
115 |
-
inputs.input_ids,
|
116 |
-
max_new_tokens=60,
|
117 |
-
no_repeat_ngram_size=3,
|
118 |
-
repetition_penalty=1.5,
|
119 |
-
do_sample=True,
|
120 |
-
top_k=100,
|
121 |
-
top_p=0.3,
|
122 |
-
temperature=0.4,
|
123 |
-
stop_strings=['<s>'],
|
124 |
-
tokenizer=tokenizer,
|
125 |
-
)
|
126 |
-
|
127 |
-
# Декодирование ответа
|
128 |
-
# response = list(map(tokenizer.decode, outputs))[0]
|
129 |
-
response = tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)[0]
|
130 |
-
logger.info(f"Ответ: {response}")
|
131 |
-
|
132 |
-
if not response:
|
133 |
-
response = "🤔 Пока не знаю, что ответить. Можете переформулировать вопрос?"
|
134 |
-
|
135 |
-
# Отправка ответа
|
136 |
-
await update.message.reply_text(response, parse_mode=None)
|
137 |
-
add_to_chat_history(chat_id, user_input, response)
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
logger.error(f"Ошибка обработки сообщения: {str(e)}")
|
141 |
-
await update.message.reply_text("❌ Произошла ошибка при обработке запроса")
|
142 |
-
|
143 |
-
|
144 |
-
def app() -> None:
|
145 |
-
try:
|
146 |
-
application = ApplicationBuilder().token(TOKEN).build()
|
147 |
-
application.add_handler(CommandHandler("start", start))
|
148 |
-
application.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, handle_message))
|
149 |
-
application.add_error_handler(error)
|
150 |
-
|
151 |
-
logger.info("Бот запущен")
|
152 |
-
application.run_polling()
|
153 |
-
|
154 |
-
except Exception as e:
|
155 |
-
logger.error(f"Ошибка запуска бота: {str(e)}")
|
156 |
-
|
157 |
-
|
158 |
-
async def error(update: Update, context: CallbackContext) -> None:
|
159 |
-
logger.error(f'Ошибка: {context.error}')
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
if __name__ == '__app__':
|
163 |
app()
|
|
|
1 |
+
from llama_cpp import Llama
|
|
|
|
|
2 |
|
3 |
+
llm = Llama.from_pretrained(
|
4 |
+
repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
|
5 |
+
filename="Phi-3-mini-4k-instruct-fp16.gguf",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
output = llm(
|
9 |
+
"Once upon a time,",
|
10 |
+
max_tokens=512,
|
11 |
+
echo=True
|
12 |
+
)
|
13 |
+
print(output)
|
14 |
|
15 |
if __name__ == '__app__':
|
16 |
app()
|