srbdni
commited on
Commit
·
0dfaa38
1
Parent(s):
d646c47
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
from langchain.document_loaders import OnlinePDFLoader
|
| 6 |
+
|
| 7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
from langchain.llms import OpenAI
|
| 11 |
+
|
| 12 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
from langchain.vectorstores import Chroma
|
| 16 |
+
|
| 17 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 18 |
+
|
| 19 |
+
def loading_pdf():
|
| 20 |
+
return "Loading..."
|
| 21 |
+
|
| 22 |
+
def pdf_changes(pdf_doc, open_ai_key):
|
| 23 |
+
|
| 24 |
+
if openai_key is not None:
|
| 25 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
| 26 |
+
documents = loader.load()
|
| 27 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 28 |
+
texts = text_splitter.split_documents(documents)
|
| 29 |
+
embeddings = OpenAIEmbeddings()
|
| 30 |
+
db = Chroma.from_documents(texts, embeddings)
|
| 31 |
+
retriever = db.as_retriever()
|
| 32 |
+
global qa
|
| 33 |
+
qa = ConversationalRetrievalChain.from_llm(
|
| 34 |
+
llm=OpenAI(temperature=0.5),
|
| 35 |
+
retriever=retriever,
|
| 36 |
+
return_source_documents=False)
|
| 37 |
+
return "Ready"
|
| 38 |
+
else:
|
| 39 |
+
return "You forgot OpenAI API key"
|
| 40 |
+
|
| 41 |
+
def add_text(history, text):
|
| 42 |
+
history = history + [(text, None)]
|
| 43 |
+
return history, ""
|
| 44 |
+
|
| 45 |
+
def bot(history):
|
| 46 |
+
response = infer(history[-1][0], history)
|
| 47 |
+
history[-1][1] = ""
|
| 48 |
+
|
| 49 |
+
for character in response:
|
| 50 |
+
history[-1][1] += character
|
| 51 |
+
time.sleep(0.05)
|
| 52 |
+
yield history
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def infer(question, history):
|
| 56 |
+
|
| 57 |
+
res = []
|
| 58 |
+
for human, ai in history[:-1]:
|
| 59 |
+
pair = (human, ai)
|
| 60 |
+
res.append(pair)
|
| 61 |
+
|
| 62 |
+
chat_history = res
|
| 63 |
+
#print(chat_history)
|
| 64 |
+
query = question
|
| 65 |
+
result = qa({"question": query, "chat_history": chat_history})
|
| 66 |
+
#print(result)
|
| 67 |
+
return result["answer"]
|
| 68 |
+
|
| 69 |
+
css="""
|
| 70 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
title = """
|
| 74 |
+
<div style="text-align: center;max-width: 700px;">
|
| 75 |
+
<h1>Chat PDF</h1>
|
| 76 |
+
<p style="text-align: center;">Upload a .PDF click the "Load PDF to LangChain" after upload is complete , <br />
|
| 77 |
+
when everything is ready, you can start asking questions about the pdf <br />
|
| 78 |
+
This version is set to store chat history</p>
|
| 79 |
+
</div>
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
with gr.Blocks(css=css) as demo:
|
| 84 |
+
with gr.Column(elem_id="col-container"):
|
| 85 |
+
gr.HTML(title)
|
| 86 |
+
|
| 87 |
+
with gr.Column():
|
| 88 |
+
openai_key = os.environ['OPENAI_API_KEY']
|
| 89 |
+
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
| 90 |
+
with gr.Row():
|
| 91 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
| 92 |
+
load_pdf = gr.Button("Load pdf to langchain")
|
| 93 |
+
|
| 94 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
| 95 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
| 96 |
+
submit_btn = gr.Button("Send Message")
|
| 97 |
+
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
| 98 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
|
| 99 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
| 100 |
+
bot, chatbot, chatbot
|
| 101 |
+
)
|
| 102 |
+
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
| 103 |
+
bot, chatbot, chatbot)
|
| 104 |
+
|
| 105 |
+
demo.launch()
|