alisrbdni's picture
Update app.py
8fe0c4a verified
raw
history blame
46.4 kB
# %%writefile app.py
import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset, Dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import pandas as pd
import random
from collections import OrderedDict
import flwr as fl
DEVICE = torch.device("cpu")
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
raw_datasets = load_dataset(dataset_name)
raw_datasets = raw_datasets.shuffle(seed=42)
del raw_datasets["unsupervised"]
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
train_datasets = []
test_datasets = []
for _ in range(num_clients):
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
train_datasets.append(train_dataset)
test_datasets.append(test_dataset)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
return train_datasets, test_datasets, data_collator
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-5)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
net.eval()
loss = 0
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
class CustomClient(fl.client.NumPyClient):
def __init__(self, net, trainloader, testloader, client_id):
self.net = net
self.trainloader = trainloader
self.testloader = testloader
self.client_id = client_id
self.losses = []
self.accuracies = []
def get_parameters(self, config):
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
def set_parameters(self, parameters):
params_dict = zip(self.net.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
self.net.load_state_dict(state_dict, strict=True)
def fit(self, parameters, config, round_num, plot_placeholder):
self.set_parameters(parameters)
train(self.net, self.trainloader, epochs=1)
loss, accuracy = test(self.net, self.testloader)
self.losses.append(loss)
self.accuracies.append(accuracy)
self.plot_metrics(round_num, plot_placeholder)
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
def evaluate(self, parameters, config):
self.set_parameters(parameters)
loss, accuracy = test(self.net, self.testloader)
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
def plot_metrics(self, round_num, plot_placeholder):
if self.losses and self.accuracies:
plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('Round')
ax1.set_ylabel('Loss', color=color)
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
color = 'tab:blue'
ax2.set_ylabel('Accuracy', color=color)
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout()
plot_placeholder.pyplot(fig)
def main():
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
trainloaders = []
testloaders = []
clients = []
for i in range(NUM_CLIENTS):
st.write(f"### Client {i+1} Datasets")
train_df = pd.DataFrame(train_datasets[i])
test_df = pd.DataFrame(test_datasets[i])
st.write("#### Train Dataset")
edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
st.write("#### Test Dataset")
edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
edited_train_dataset = Dataset.from_pandas(edited_train_df)
edited_test_dataset = Dataset.from_pandas(edited_test_df)
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
trainloaders.append(trainloader)
testloaders.append(testloader)
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
client = CustomClient(net, trainloader, testloader, client_id=i+1)
clients.append(client)
if st.button("Start Training"):
def client_fn(cid):
return clients[int(cid)]
def weighted_average(metrics):
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
losses = [num_examples * m["loss"] for num_examples, m in metrics]
examples = [num_examples for num_examples, _ in metrics]
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
strategy = fl.server.strategy.FedAvg(
fraction_fit=1.0,
fraction_evaluate=1.0,
evaluate_metrics_aggregation_fn=weighted_average,
)
for round_num in range(NUM_ROUNDS):
st.write(f"### Round {round_num + 1}")
plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
fl.simulation.start_simulation(
client_fn=client_fn,
num_clients=NUM_CLIENTS,
config=fl.server.ServerConfig(num_rounds=1),
strategy=strategy,
client_resources={"num_cpus": 1, "num_gpus": 0},
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
)
for i, client in enumerate(clients):
client.plot_metrics(round_num + 1, plot_placeholders[i])
st.write(" ")
st.success("Training completed successfully!")
# Display final metrics
st.write("## Final Client Metrics")
for client in clients:
st.write(f"### Client {client.client_id}")
st.write(f"Final Loss: {client.losses[-1]:.4f}")
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
client.plot_metrics(NUM_ROUNDS, st.empty())
st.write(" ")
else:
st.write("Click the 'Start Training' button to start the training process.")
if __name__ == "__main__":
main()
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader, client_id):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# self.client_id = client_id
# self.losses = []
# self.accuracies = []
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# loss, accuracy = test(self.net, self.testloader)
# self.losses.append(loss)
# self.accuracies.append(accuracy)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def plot_metrics(self, round_num):
# if self.losses and self.accuracies:
# st.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
# st.write(f"Loss: {self.losses[-1]:.4f}")
# st.write(f"Accuracy: {self.accuracies[-1]:.4f}")
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
# ax1.set_xlabel('Round')
# ax1.set_ylabel('Loss', color='g')
# ax2.set_ylabel('Accuracy', color='b')
# plt.title(f'Client {self.client_id} Metrics')
# st.pyplot(fig)
# def main():
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# clients = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
# clients.append(client)
# if st.button("Start Training"):
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# for round_num in range(NUM_ROUNDS):
# st.write(f"### Round {round_num + 1}")
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=1),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# for client in clients:
# client.plot_metrics(round_num + 1)
# st.write(" ")
# st.success(f"Training completed successfully!")
# # Display final metrics
# st.write("## Final Client Metrics")
# for client in clients:
# st.write(f"### Client {client.client_id}")
# st.write(f"Final Loss: {client.losses[-1]:.4f}")
# st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
# client.plot_metrics(NUM_ROUNDS)
# st.write(" ")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader, client_id):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# self.client_id = client_id
# self.losses = []
# self.accuracies = []
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# loss, accuracy = test(self.net, self.testloader)
# self.losses.append(loss)
# self.accuracies.append(accuracy)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def plot_metrics(self):
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
# ax1.set_xlabel('Round')
# ax1.set_ylabel('Loss', color='g')
# ax2.set_ylabel('Accuracy', color='b')
# plt.title(f'Client {self.client_id} Metrics')
# st.pyplot(fig)
# def main():
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# clients = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
# clients.append(client)
# if st.button("Start Training"):
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# st.success(f"Training completed successfully!")
# for client in clients:
# st.write(f"### Client {client.client_id} Model Metrics")
# client.plot_metrics()
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
# 05/2024 # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def main():
# st.write("## Federated Learning with Flower and Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# if st.button("Start Training"):
# round_losses = []
# round_accuracies = []
# clients = [CustomClient(net, trainloaders[i], testloaders[i]) for i in range(NUM_CLIENTS)]
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# st.success(f"Training completed successfully!")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
##ORIGINAL###
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import random
# DEVICE = torch.device("cpu")
# NUM_ROUNDS = 3
# def load_data(dataset_name):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# train_population = random.sample(range(len(raw_datasets["train"])), 20)
# test_population = random.sample(range(len(raw_datasets["test"])), 20)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
# tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
# return trainloader, testloader
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# loss = 0
# net.eval()
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader.dataset)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# from transformers import Wav2Vec2Processor, HubertForSequenceClassification
# import torch
# def main():
# st.write("## Federated Learning with dynamic models and datasets for mobile devices")
# dataset_name = st.selectbox("Dataset", ["imdb","audio_instruction_task", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# # processor = Wav2Vec2Processor.from_pretrained(model_name)
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# trainloader, testloader = load_data(dataset_name)
# if st.button("Start Training"):
# round_losses = []
# round_accuracies = [] # Store accuracy values for each round
# for round_num in range(1, NUM_ROUNDS + 1):
# st.write(f"## Round {round_num}")
# st.write("### Training Metrics for Each Client")
# for client in range(1, NUM_CLIENTS + 1):
# client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
# st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
# st.write("### Accuracy Over Rounds")
# round_accuracies.append(client_accuracy) # Append the accuracy for this round
# plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
# plt.xlabel("Round")
# plt.ylabel("Accuracy")
# plt.title("Accuracy Over Rounds")
# st.pyplot()
# st.write("### Loss Over Rounds")
# loss_value = random.random() # Placeholder for loss values
# round_losses.append(loss_value)
# rounds = list(range(1, round_num + 1))
# plt.plot(rounds, round_losses)
# plt.xlabel("Round")
# plt.ylabel("Loss")
# plt.title("Loss Over Rounds")
# st.pyplot()
# st.success(f"Round {round_num} completed successfully!")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
###ORIGINAL##
# ########################TinyLLM####################################
# import torch
# import torch.nn as nn
# from torch.nn import functional as F
# # hyperparameters
# batch_size = 64 # how many independent sequences will we process in parallel?
# block_size = 256 # what is the maximum context length for predictions?
# max_iters = 5000
# eval_interval = 500
# learning_rate = 3e-4
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# eval_iters = 200
# n_embd = 384
# n_head = 6
# n_layer = 6
# dropout = 0.2
# # ------------
# torch.manual_seed(1337)
# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
# with open('input.txt', 'r', encoding='utf-8') as f:
# text = f.read()
# # here are all the unique characters that occur in this text
# chars = sorted(list(set(text)))
# vocab_size = len(chars)
# # create a mapping from characters to integers
# stoi = { ch:i for i,ch in enumerate(chars) }
# itos = { i:ch for i,ch in enumerate(chars) }
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# # Train and test splits
# data = torch.tensor(encode(text), dtype=torch.long)
# n = int(0.9*len(data)) # first 90% will be train, rest val
# train_data = data[:n]
# val_data = data[n:]
# # data loading
# def get_batch(split):
# # generate a small batch of data of inputs x and targets y
# data = train_data if split == 'train' else val_data
# ix = torch.randint(len(data) - block_size, (batch_size,))
# x = torch.stack([data[i:i+block_size] for i in ix])
# y = torch.stack([data[i+1:i+block_size+1] for i in ix])
# x, y = x.to(device), y.to(device)
# return x, y
# @torch.no_grad()
# def estimate_loss():
# out = {}
# model.eval()
# for split in ['train', 'val']:
# losses = torch.zeros(eval_iters)
# for k in range(eval_iters):
# X, Y = get_batch(split)
# logits, loss = model(X, Y)
# losses[k] = loss.item()
# out[split] = losses.mean()
# model.train()
# return out
# class Head(nn.Module):
# """ one head of self-attention """
# def __init__(self, head_size):
# super().__init__()
# self.key = nn.Linear(n_embd, head_size, bias=False)
# self.query = nn.Linear(n_embd, head_size, bias=False)
# self.value = nn.Linear(n_embd, head_size, bias=False)
# self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# # input of size (batch, time-step, channels)
# # output of size (batch, time-step, head size)
# B,T,C = x.shape
# k = self.key(x) # (B,T,hs)
# q = self.query(x) # (B,T,hs)
# # compute attention scores ("affinities")
# wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
# wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
# wei = F.softmax(wei, dim=-1) # (B, T, T)
# wei = self.dropout(wei)
# # perform the weighted aggregation of the values
# v = self.value(x) # (B,T,hs)
# out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
# return out
# class MultiHeadAttention(nn.Module):
# """ multiple heads of self-attention in parallel """
# def __init__(self, num_heads, head_size):
# super().__init__()
# self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
# self.proj = nn.Linear(head_size * num_heads, n_embd)
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# out = torch.cat([h(x) for h in self.heads], dim=-1)
# out = self.dropout(self.proj(out))
# return out
# class FeedFoward(nn.Module):
# """ a simple linear layer followed by a non-linearity """
# def __init__(self, n_embd):
# super().__init__()
# self.net = nn.Sequential(
# nn.Linear(n_embd, 4 * n_embd),
# nn.ReLU(),
# nn.Linear(4 * n_embd, n_embd),
# nn.Dropout(dropout),
# )
# def forward(self, x):
# return self.net(x)
# class Block(nn.Module):
# """ Transformer block: communication followed by computation """
# def __init__(self, n_embd, n_head):
# # n_embd: embedding dimension, n_head: the number of heads we'd like
# super().__init__()
# head_size = n_embd // n_head
# self.sa = MultiHeadAttention(n_head, head_size)
# self.ffwd = FeedFoward(n_embd)
# self.ln1 = nn.LayerNorm(n_embd)
# self.ln2 = nn.LayerNorm(n_embd)
# def forward(self, x):
# x = x + self.sa(self.ln1(x))
# x = x + self.ffwd(self.ln2(x))
# return x
# class GPTLanguageModel(nn.Module):
# def __init__(self):
# super().__init__()
# # each token directly reads off the logits for the next token from a lookup table
# self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
# self.position_embedding_table = nn.Embedding(block_size, n_embd)
# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
# self.ln_f = nn.LayerNorm(n_embd) # final layer norm
# self.lm_head = nn.Linear(n_embd, vocab_size)
# # better init, not covered in the original GPT video, but important, will cover in followup video
# self.apply(self._init_weights)
# def _init_weights(self, module):
# if isinstance(module, nn.Linear):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# if module.bias is not None:
# torch.nn.init.zeros_(module.bias)
# elif isinstance(module, nn.Embedding):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# def forward(self, idx, targets=None):
# B, T = idx.shape
# # idx and targets are both (B,T) tensor of integers
# tok_emb = self.token_embedding_table(idx) # (B,T,C)
# pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
# x = tok_emb + pos_emb # (B,T,C)
# x = self.blocks(x) # (B,T,C)
# x = self.ln_f(x) # (B,T,C)
# logits = self.lm_head(x) # (B,T,vocab_size)
# if targets is None:
# loss = None
# else:
# B, T, C = logits.shape
# logits = logits.view(B*T, C)
# targets = targets.view(B*T)
# loss = F.cross_entropy(logits, targets)
# return logits, loss
# def generate(self, idx, max_new_tokens):
# # idx is (B, T) array of indices in the current context
# for _ in range(max_new_tokens):
# # crop idx to the last block_size tokens
# idx_cond = idx[:, -block_size:]
# # get the predictions
# logits, loss = self(idx_cond)
# # focus only on the last time step
# logits = logits[:, -1, :] # becomes (B, C)
# # apply softmax to get probabilities
# probs = F.softmax(logits, dim=-1) # (B, C)
# # sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# # append sampled index to the running sequence
# idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
# return idx
# model = GPTLanguageModel()
# m = model.to(device)
# # print the number of parameters in the model
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
# # create a PyTorch optimizer
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# for iter in range(max_iters):
# # every once in a while evaluate the loss on train and val sets
# if iter % eval_interval == 0 or iter == max_iters - 1:
# losses = estimate_loss()
# print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# # sample a batch of data
# xb, yb = get_batch('train')
# # evaluate the loss
# logits, loss = model(xb, yb)
# optimizer.zero_grad(set_to_none=True)
# loss.backward()
# optimizer.step()
# # generate from the model
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
# ########################TinyLLM##################################
# def main():
# st.write("## Audio Classification with HuBERT")
# dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"])
# model_name = "facebook/hubert-base-ls960"
# processor = Wav2Vec2Processor.from_pretrained(model_name)
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# train_dataset, test_dataset = load_data(dataset_name)
# # Further implementation needed for actual data preparation and training loops
# st.write("Details of further steps would be filled in based on specific requirements and dataset structure.")
# if __name__ == "__main__":
# main()
# from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification
# import torch
# import soundfile as sf
# def load_audio(file_path):
# # Load an audio file, return waveform and sampling rate
# waveform, sample_rate = sf.read(file_path)
# return waveform, sample_rate
# def prepare_dataset(data_paths):
# # Dummy function to simulate loading and processing a dataset
# # Replace this with actual data loading and processing logic
# features = []
# labels = []
# for path, label in data_paths:
# waveform, sr = load_audio(path)
# input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values
# features.append(input_values)
# labels.append(label)
# return torch.cat(features, dim=0), torch.tensor(labels)