Spaces:
Running
Running
| import numpy as np | |
| from basis import ScoreBasis | |
| class BSSEval(ScoreBasis): | |
| def __init__(self): | |
| super(BSSEval, self).__init__(name='BSSEval') | |
| self.intrusive = False | |
| def windowed_scoring(self, audios, score_rate): | |
| bss_window = np.inf | |
| bss_hop = np.inf | |
| from museval.metrics import bss_eval | |
| if len(audios) != 2: | |
| return None | |
| result = bss_eval(reference_sources=audios[1][None,...], # shape: [nsrc, nsample, nchannels] | |
| estimated_sources=audios[0][None,...], | |
| window=bss_window * score_rate, | |
| hop=bss_hop * score_rate) | |
| return {'SDR': result[0][0][0], 'ISR': result[1][0][0], 'SAR': result[3][0][0]} | |