import torch.nn as nn import torch.nn.functional as F import torch as th from torch.nn.parameter import Parameter import numpy as np import os class UniDeepFsmn(nn.Module): def __init__(self, input_dim, output_dim, lorder=None, hidden_size=None): super(UniDeepFsmn, self).__init__() self.input_dim = input_dim self.output_dim = output_dim if lorder is None: return self.lorder = lorder self.hidden_size = hidden_size self.linear = nn.Linear(input_dim, hidden_size) self.project = nn.Linear(hidden_size, output_dim, bias=False) self.conv1 = nn.Conv2d(output_dim, output_dim, [lorder+lorder-1, 1], [1, 1], groups=output_dim, bias=False) def forward(self, input): f1 = F.relu(self.linear(input)) p1 = self.project(f1) x = th.unsqueeze(p1, 1) x_per = x.permute(0, 3, 2, 1) y = F.pad(x_per, [0, 0, self.lorder - 1, self.lorder - 1]) out = x_per + self.conv1(y) out1 = out.permute(0, 3, 2, 1) return input + out1.squeeze() class DilatedDenseNet(nn.Module): def __init__(self, depth=4, lorder=20, in_channels=64): super(DilatedDenseNet, self).__init__() self.depth = depth self.in_channels = in_channels self.pad = nn.ConstantPad2d((1, 1, 1, 0), value=0.) self.twidth = lorder*2-1 self.kernel_size = (self.twidth, 1) for i in range(self.depth): dil = 2 ** i pad_length = lorder + (dil - 1) * (lorder - 1) - 1 setattr(self, 'pad{}'.format(i + 1), nn.ConstantPad2d((0, 0, pad_length, pad_length), value=0.)) setattr(self, 'conv{}'.format(i + 1), nn.Conv2d(self.in_channels*(i+1), self.in_channels, kernel_size=self.kernel_size, dilation=(dil, 1), groups=self.in_channels, bias=False)) setattr(self, 'norm{}'.format(i + 1), nn.InstanceNorm2d(in_channels, affine=True)) setattr(self, 'prelu{}'.format(i + 1), nn.PReLU(self.in_channels)) def forward(self, x): skip = x for i in range(self.depth): out = getattr(self, 'pad{}'.format(i + 1))(skip) out = getattr(self, 'conv{}'.format(i + 1))(out) out = getattr(self, 'norm{}'.format(i + 1))(out) out = getattr(self, 'prelu{}'.format(i + 1))(out) skip = th.cat([out, skip], dim=1) return out class UniDeepFsmn_dilated(nn.Module): def __init__(self, input_dim, output_dim, lorder=None, hidden_size=None): super(UniDeepFsmn_dilated, self).__init__() self.input_dim = input_dim self.output_dim = output_dim if lorder is None: return self.lorder = lorder self.hidden_size = hidden_size self.linear = nn.Linear(input_dim, hidden_size) self.project = nn.Linear(hidden_size, output_dim, bias=False) self.conv = DilatedDenseNet(depth=2, lorder=lorder, in_channels=output_dim) def forward(self, input): f1 = F.relu(self.linear(input)) p1 = self.project(f1) x = th.unsqueeze(p1, 1) x_per = x.permute(0, 3, 2, 1) out = self.conv(x_per) out1 = out.permute(0, 3, 2, 1) return input + out1.squeeze()