Spaces:
Running
on
Zero
Running
on
Zero
from models.mossformer2_sr.generator import Mossformer, Generator | |
import torch.nn as nn | |
class MossFormer2_SR_48K(nn.Module): | |
""" | |
The MossFormer2_SR_48K model for speech super-resolution. | |
This class encapsulates the functionality of the MossFormer2 and HiFi-Gan | |
Generator within a higher-level model. It processes input audio data to produce | |
higher-resolution outputs. | |
Arguments | |
--------- | |
args : Namespace | |
Configuration arguments that may include hyperparameters | |
and model settings (not utilized in this implementation but | |
can be extended for flexibility). | |
Example | |
--------- | |
>>> model = MossFormer2_SR_48K(args).model | |
>>> x = torch.randn(10, 180, 2000) # Example input | |
>>> outputs = model(x) # Forward pass | |
>>> outputs.shape, mask.shape # Check output shapes | |
""" | |
def __init__(self, args): | |
super(MossFormer2_SR_48K, self).__init__() | |
# Initialize the TestNet model, which contains the MossFormer MaskNet | |
self.model_m = Mossformer() # Instance of TestNet | |
self.model_g = Generator(args) | |
def forward(self, x): | |
""" | |
Forward pass through the model. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor of dimension [B, N, S], where B is the batch size, | |
N is the number of mel bins (80 in this case), and S is the | |
sequence length (e.g., time frames). | |
Returns | |
------- | |
outputs : torch.Tensor | |
Bandwidth expanded audio output tensor from the model. | |
""" | |
x = self.model_m(x) # Get outputs and mask from TestNet | |
outpus = self.model_g(x) | |
return outputs # Return the outputs | |