Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,953 Bytes
8e8cd3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class UniDeepFsmn(nn.Module):
"""
A single layer Deep Feedforward Sequential Memory Network (FSMN) for unidirectional processing.
This model uses a combination of linear layers and convolutional layers to process input features.
Attributes:
- input_dim (int): Number of input features.
- output_dim (int): Number of output features.
- lorder (int): Order of the linear filter.
- hidden_size (int): Number of hidden units in the linear layer.
"""
def __init__(self, input_dim, output_dim, lorder=None, hidden_size=None):
super(UniDeepFsmn, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
if lorder is None:
return # If no filter order is provided, skip initialization
self.lorder = lorder
self.hidden_size = hidden_size
# Linear layer to project input to hidden space
self.linear = nn.Linear(input_dim, hidden_size)
# Projection layer to output space
self.project = nn.Linear(hidden_size, output_dim, bias=False)
# Depthwise convolution layer for filtering
self.conv1 = nn.Conv2d(output_dim, output_dim, [lorder, 1], [1, 1], groups=output_dim, bias=False)
def forward(self, input):
"""
Forward pass through the UniDeepFsmn model.
Parameters:
- input (Tensor): Input tensor of shape (batch_size, sequence_length, input_dim).
Returns:
- Tensor: Output tensor after processing, with the same shape as input.
"""
# Apply linear transformation and ReLU activation
f1 = F.relu(self.linear(input))
# Project to output dimension
p1 = self.project(f1)
# Reshape and pad the tensor for convolution
x = torch.unsqueeze(p1, 1) # Shape: (b, c, T, h)
x_per = x.permute(0, 3, 2, 1) # Permute to shape (b, h, T, c)
y = F.pad(x_per, [0, 0, self.lorder - 1, 0]) # Pad the tensor
# Add convolutional output to original input
out = x_per + self.conv1(y)
out1 = out.permute(0, 3, 2, 1) # Restore original shape
return input + out1.squeeze() # Return the combined output
class ComplexUniDeepFsmn(nn.Module):
"""
A complex variant of the UniDeepFsmn that processes complex-valued input.
This model has separate layers for the real and imaginary components.
Attributes:
- nIn (int): Number of input features.
- nHidden (int): Number of hidden units in the FSMN layers.
- nOut (int): Number of output features.
"""
def __init__(self, nIn, nHidden=128, nOut=128):
super(ComplexUniDeepFsmn, self).__init__()
# Initialize FSMN layers for real and imaginary parts
self.fsmn_re_L1 = UniDeepFsmn(nIn, nHidden, 20, nHidden)
self.fsmn_im_L1 = UniDeepFsmn(nIn, nHidden, 20, nHidden)
self.fsmn_re_L2 = UniDeepFsmn(nHidden, nOut, 20, nHidden)
self.fsmn_im_L2 = UniDeepFsmn(nHidden, nOut, 20, nHidden)
def forward(self, x):
"""
Forward pass through the ComplexUniDeepFsmn model.
Parameters:
- x (Tensor): Input tensor of shape (batch_size, channels, height, time, 2) where
the last dimension represents the real and imaginary parts.
Returns:
- Tensor: Output tensor after processing.
"""
# Reshape input to [b, c*h, T, 2]
b, c, h, T, d = x.size()
x = torch.reshape(x, (b, c * h, T, d)) # Flatten channel and height
x = torch.transpose(x, 1, 2) # Permute to [b, T, c*h, 2]
# Process the real and imaginary parts
real_L1 = self.fsmn_re_L1(x[..., 0]) - self.fsmn_im_L1(x[..., 1])
imaginary_L1 = self.fsmn_re_L1(x[..., 1]) + self.fsmn_im_L1(x[..., 0])
# Process the second layer
real = self.fsmn_re_L2(real_L1) - self.fsmn_im_L2(imaginary_L1)
imaginary = self.fsmn_re_L2(imaginary_L1) + self.fsmn_im_L2(real_L1)
# Combine real and imaginary parts into output tensor
output = torch.stack((real, imaginary), dim=-1) # Shape: [b, T, h, 2]
output = torch.transpose(output, 1, 2) # Shape: [b, h, T, 2]
output = torch.reshape(output, (b, c, h, T, d)) # Restore original shape
return output
class ComplexUniDeepFsmn_L1(nn.Module):
"""
A complex variant of UniDeepFsmn for the first layer.
This model processes complex-valued input and has two FSMN layers for the real and imaginary parts.
Attributes:
- nIn (int): Number of input features.
- nHidden (int): Number of hidden units in the FSMN layers.
- nOut (int): Number of output features.
"""
def __init__(self, nIn, nHidden=128, nOut=128):
super(ComplexUniDeepFsmn_L1, self).__init__()
self.fsmn_re_L1 = UniDeepFsmn(nIn, nHidden, 20, nHidden)
self.fsmn_im_L1 = UniDeepFsmn(nIn, nHidden, 20, nHidden)
def forward(self, x):
"""
Forward pass through the ComplexUniDeepFsmn_L1 model.
Parameters:
- x (Tensor): Input tensor of shape (batch_size, channels, height, time, 2).
Returns:
- Tensor: Output tensor after processing.
"""
b, c, h, T, d = x.size()
x = torch.transpose(x, 1, 3) # Shape: [b, T, h, c, 2]
x = torch.reshape(x, (b * T, h, c, d)) # Reshape to process
# Process the real and imaginary parts
real = self.fsmn_re_L1(x[..., 0]) - self.fsmn_im_L1(x[..., 1])
imaginary = self.fsmn_re_L1(x[..., 1]) + self.fsmn_im_L1(x[..., 0])
# Combine results and reshape back to original dimensions
output = torch.stack((real, imaginary), dim=-1) # Shape: [b*T, h, c, 2]
output = torch.reshape(output, (b, T, h, c, d)) # Restore shape to [b, T, h, c, 2]
output = torch.transpose(output, 1, 3) # Shape: [b, c, h, T, 2]
return output
class BidirectionalLSTM_L1(nn.Module):
"""
A unidirectional LSTM model for processing sequences.
Attributes:
- nIn (int): Number of input features.
- nHidden (int): Number of hidden units in the LSTM.
- nOut (int): Number of output features.
"""
def __init__(self, nIn, nHidden, nOut):
super(BidirectionalLSTM_L1, self).__init__()
self.rnn = nn.GRU(nIn, nHidden, bidirectional=False) # Using GRU instead of LSTM
def forward(self, input):
"""
Forward pass through the BidirectionalLSTM_L1 model.
Parameters:
- input (Tensor): Input tensor of shape (sequence_length, batch_size, input_dim).
Returns:
- Tensor: Output tensor after processing.
"""
output, _ = self.rnn(input) # Forward pass through GRU
return output
class BidirectionalLSTM_L2(nn.Module):
"""
A unidirectional Long Short-Term Memory (LSTM) network that processes input sequences
and produces an output using a linear embedding layer.
Attributes:
rnn (nn.GRU): The GRU layer for processing the input sequences.
embedding (nn.Linear): A linear layer that transforms the output of the GRU to the desired output dimension.
"""
def __init__(self, nIn, nHidden, nOut):
super(BidirectionalLSTM_L2, self).__init__()
# Initialize the GRU layer
self.rnn = nn.GRU(nIn, nHidden, bidirectional=False)
# Initialize the linear embedding layer
self.embedding = nn.Linear(nHidden, nOut)
def forward(self, input):
"""
Forward pass through the Bidirectional LSTM network.
Args:
input (torch.Tensor): Input tensor of shape (T, b, nIn), where T is the sequence length,
b is the batch size, and nIn is the input feature size.
Returns:
torch.Tensor: Output tensor of shape (T, b, nOut), where nOut is the output feature size.
"""
recurrent, _ = self.rnn(input) # Process the input through the GRU layer
# Get the shape of the recurrent output
T, b, h = recurrent.size()
t_rec = recurrent.view(T * b, h) # Flatten the output for the embedding layer
output = self.embedding(t_rec) # Apply the linear embedding layer
output = output.view(T, b, -1) # Reshape back to (T, b, nOut)
return output
class ComplexBidirectionalLSTM(nn.Module):
"""
A complex-valued bidirectional LSTM that processes input sequences containing real
and imaginary components, producing a complex-valued output.
Attributes:
lstm_re_L1 (BidirectionalLSTM_L1): First layer for the real part of the input.
lstm_im_L1 (BidirectionalLSTM_L1): First layer for the imaginary part of the input.
lstm_re_L2 (BidirectionalLSTM_L2): Second layer for the real part of the input.
lstm_im_L2 (BidirectionalLSTM_L2): Second layer for the imaginary part of the input.
"""
def __init__(self, nIn, nHidden=128, nOut=1024):
super(ComplexBidirectionalLSTM, self).__init__()
# Initialize the first and second LSTM layers for real and imaginary components
self.lstm_re_L1 = BidirectionalLSTM_L1(nIn, nHidden, nOut)
self.lstm_im_L1 = BidirectionalLSTM_L1(nIn, nHidden, nOut)
self.lstm_re_L2 = BidirectionalLSTM_L2(nHidden, nHidden, nOut)
self.lstm_im_L2 = BidirectionalLSTM_L2(nHidden, nHidden, nOut)
def forward(self, x):
"""
Forward pass through the complex-valued bidirectional LSTM.
Args:
x (torch.Tensor): Input tensor of shape (b, c, h, T, 2) where:
- b is the batch size,
- c is the number of channels,
- h is the number of hidden units,
- T is the sequence length,
- 2 represents the real and imaginary parts.
Returns:
torch.Tensor: Output tensor of shape (b, c, h, T, 2).
"""
# Get the shape of the input tensor
b, c, h, T, d = x.size()
# Reshape the input for processing
x = torch.reshape(x, (b, c*h, T, d))
# Transpose to prepare for LSTM processing
x = torch.transpose(x, 0, 2) # Shape: (T, c*h, d)
x = torch.transpose(x, 1, 2) # Shape: (T, d, c*h)
# Process the real and imaginary parts through LSTM layers
real_L1 = self.lstm_re_L1(x[..., 0]) - self.lstm_im_L1(x[..., 1])
imaginary_L1 = self.lstm_re_L1(x[..., 1]) + self.lstm_im_L1(x[..., 0])
real = self.lstm_re_L2(real_L1) - self.lstm_im_L2(imaginary_L1)
imaginary = self.lstm_re_L2(imaginary_L1) + self.lstm_im_L2(real_L1)
# Stack the real and imaginary parts to create the output tensor
output = torch.stack((real, imaginary), dim=-1) # Shape: (T, b, h, 2)
output = torch.transpose(output, 1, 2) # Shape: (T, h, b, 2)
output = torch.transpose(output, 0, 2) # Shape: (b, h, T, 2)
output = torch.reshape(output, (b, c, h, T, d)) # Shape: (b, c, h, T, 2)
return output
class ComplexConv2d(nn.Module):
"""
A complex-valued 2D convolutional layer that processes input tensors with real
and imaginary parts, returning a complex output.
Attributes:
conv_re (nn.Conv2d): Convolutional layer for the real part.
conv_im (nn.Conv2d): Convolutional layer for the imaginary part.
"""
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, **kwargs):
super().__init__()
# Initialize convolutional layers for real and imaginary components
self.conv_re = nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias, **kwargs)
self.conv_im = nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias, **kwargs)
def forward(self, x):
"""
Forward pass through the complex convolutional layer.
Args:
x (torch.Tensor): Input tensor of shape (batch, channel, axis1, axis2, 2)
representing the real and imaginary parts.
Returns:
torch.Tensor: Output tensor containing the convolved real and imaginary parts.
"""
# Apply convolution to the real and imaginary parts
real = self.conv_re(x[..., 0]) - self.conv_im(x[..., 1])
imaginary = self.conv_re(x[..., 1]) + self.conv_im(x[..., 0])
output = torch.stack((real, imaginary), dim=-1) # Stack real and imaginary components
return output
class ComplexConvTranspose2d(nn.Module):
"""
A complex-valued 2D transposed convolutional layer that processes input tensors
with real and imaginary parts, returning a complex output.
Attributes:
tconv_re (nn.ConvTranspose2d): Transposed convolutional layer for the real part.
tconv_im (nn.ConvTranspose2d): Transposed convolutional layer for the imaginary part.
"""
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, output_padding=0, dilation=1, groups=1, bias=True, **kwargs):
super().__init__()
# Initialize transposed convolutional layers for real and imaginary components
self.tconv_re = nn.ConvTranspose2d(in_channel, out_channel,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
bias=bias,
dilation=dilation,
**kwargs)
self.tconv_im = nn.ConvTranspose2d(in_channel, out_channel,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
bias=bias,
dilation=dilation,
**kwargs)
def forward(self, x):
"""
Forward pass through the complex transposed convolutional layer.
Args:
x (torch.Tensor): Input tensor of shape (batch, channel, axis1, axis2, 2)
representing the real and imaginary parts.
Returns:
torch.Tensor: Output tensor containing the transposed convoluted real and imaginary parts.
"""
# Apply transposed convolution to the real and imaginary parts
real = self.tconv_re(x[..., 0]) - self.tconv_im(x[..., 1])
imaginary = self.tconv_re(x[..., 1]) + self.tconv_im(x[..., 0])
output = torch.stack((real, imaginary), dim=-1) # Stack real and imaginary components
return output
class ComplexBatchNorm2d(nn.Module):
"""
A complex-valued batch normalization layer that normalizes input tensors with
separate real and imaginary components.
This layer applies batch normalization independently to the real and imaginary parts of the input,
ensuring that each part is normalized appropriately. It is particularly useful in complex-valued networks,
where inputs are represented as pairs of real and imaginary components.
Attributes:
bn_re (nn.BatchNorm2d): Batch normalization layer for the real part of the input.
bn_im (nn.BatchNorm2d): Batch normalization layer for the imaginary part of the input.
"""
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
track_running_stats=True, **kwargs):
"""
Initializes the ComplexBatchNorm2d layer.
Args:
num_features (int): Number of features (channels) for the input.
eps (float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
momentum (float, optional): Momentum for the running mean and variance. Default is 0.1.
affine (bool, optional): If True, this layer has learnable parameters. Default is True.
track_running_stats (bool, optional): If True, track the running mean and variance. Default is True.
"""
super().__init__()
# Initialize batch normalization layers for real and imaginary parts
self.bn_re = nn.BatchNorm2d(num_features=num_features, momentum=momentum, affine=affine, eps=eps, track_running_stats=track_running_stats, **kwargs)
self.bn_im = nn.BatchNorm2d(num_features=num_features, momentum=momentum, affine=affine, eps=eps, track_running_stats=track_running_stats, **kwargs)
def forward(self, x):
"""
Forward pass through the complex batch normalization layer.
Args:
x (torch.Tensor): Input tensor of shape (batch, channel, height, width, 2),
where the last dimension represents the real and imaginary parts.
Returns:
torch.Tensor: Output tensor containing the normalized real and imaginary components,
with the same shape as the input tensor.
"""
# Apply batch normalization to the real part
real = self.bn_re(x[..., 0])
# Apply batch normalization to the imaginary part
imag = self.bn_im(x[..., 1])
# Stack the normalized real and imaginary parts back together
output = torch.stack((real, imag), dim=-1)
return output
|