Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,347 Bytes
02c7bdf bdaf47a 02c7bdf a9e592e 132a2a9 f821359 02c7bdf 3956066 22b2d95 3956066 95c0d52 d04ae35 3956066 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import torch
import soundfile as sf
import gradio as gr
from clearvoice import ClearVoice
myClearVoice = ClearVoice(task='speech_enhancement', model_names=['FRCRN_SE_16K'])
def fn_clearvoice(input_wav):
output_wav_dict = myClearVoice(input_path=input_wav, online_write=False)
if isinstance(output_wav_dict, dict):
key = next(iter(output_wav_dict))
output_wav = output_wav_dict[key]
else:
output_wav = output_wav_dict
sf.write('enhanced.wav', output_wav, 16000)
return 'enhanced.wav'
se_demo = gr.Interface(
fn=fn_clearvoice,
inputs = [
gr.Audio(label="Input Audio", type="filepath")
],
outputs = [
gr.Audio(label="Output Audio", type="filepath")
],
title = "ClearVoice",
description = ("Gradio demo for Speech enhancement with ClearVoice. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below."),
article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2206.07293' target='_blank'>FRCRN: Boosting Feature Representation Using Frequency Recurrence for Monaural Speech Enhancement</a> | <a href='https://github.com/speechbrain/speechbrain' target='_blank'>Github Repo</a></p>"),
examples = [
['mandarin_speech.wav']
],
cache_examples = True,
)
se_demo.launch() |