File size: 4,868 Bytes
303de59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
import soundfile as sf
import librosa
import os
from scipy.signal import butter, filtfilt, stft, istft

# Step 1: Load audio files
def load_audio(audio_path):
    audio, sr = librosa.load(audio_path, sr=48000)
    #audio, fs = sf.read(audio_path)
    return audio, sr

# Step 2: Detect effective signal bandwidth
def detect_bandwidth_org(signal, fs, energy_threshold=0.95):
    f, t, Zxx = stft(signal, fs=fs)
    psd = np.abs(Zxx)**2
    total_energy = np.sum(psd)
    cumulative_energy = np.cumsum(np.sum(psd, axis=1)) / total_energy
    f_low = f[np.argmax(cumulative_energy > (1 - energy_threshold))]
    f_high = f[np.argmax(cumulative_energy >= energy_threshold)]
    return f_low, f_high

def detect_bandwidth(signal, fs, energy_threshold=0.99):
    f, t, Zxx = stft(signal, fs=fs)
    psd = np.abs(Zxx)**2
    total_energy = np.sum(psd)
    cumulative_energy = np.cumsum(np.sum(psd, axis=1)) / total_energy
    
    # Exclude DC component (0 Hz)
    valid_indices = np.where(f > 0)[0]
    f_low = f[valid_indices][np.argmax(cumulative_energy[valid_indices] > (1 - energy_threshold))]
    f_high = f[np.argmax(cumulative_energy >= energy_threshold)]
    return f_low, f_high
    
# Step 3: Apply bandpass and lowpass filters
def bandpass_filter(signal, fs, f_low, f_high):
    nyquist = 0.5 * fs
    low = f_low / nyquist
    high = f_high / nyquist
    b, a = butter(N=4, Wn=[low, high], btype='band')
    return filtfilt(b, a, signal)

def lowpass_filter(signal, fs, cutoff):
    nyquist = 0.5 * fs
    cutoff_normalized = cutoff / nyquist
    b, a = butter(N=4, Wn=cutoff_normalized, btype='low')
    return filtfilt(b, a, signal)

def highpass_filter(signal, fs, cutoff):
    nyquist = 0.5 * fs
    cutoff_normalized = cutoff / nyquist
    b, a = butter(N=4, Wn=cutoff_normalized, btype='high')
    return filtfilt(b, a, signal)

# Step 4: Replace bandwidth
def replace_bandwidth(signal1, signal2, fs, f_low, f_high):
    # Extract effective band from signal1
    #effective_band = bandpass_filter(signal1, fs, f_low, f_high)
    effective_band = lowpass_filter(signal1, fs, f_high)
    # Extract lowpass band from signal2
    #signal2_lowpass = lowpass_filter(signal2, fs, f_high)
    signal2_highpass = highpass_filter(signal2, fs, f_high)
    
    # Match lengths of the two signals
    min_length = min(len(effective_band), len(signal2_highpass))
    effective_band = effective_band[:min_length]
    signal2_highpass = signal2_highpass[:min_length]
    
    # Combine the two signals
    return signal2_highpass + effective_band

# Step 5: Smooth transitions
def smooth_transition(signal1, signal2, fs, transition_band=100):
    fade = np.linspace(0, 1, int(transition_band * fs / 1000))
    crossfade = np.concatenate([fade, np.ones(len(signal1) - len(fade))])
    min_length = min(len(signal1), len(signal2))
    smoothed_signal = (1 - crossfade) * signal2[:min_length] + crossfade * signal1[:min_length]
    return smoothed_signal

# Step 6: Save audio
def save_audio(file_path, audio, fs):
    sf.write(file_path, audio, fs)


def bandwidth_sub(low_bandwidth_audio, high_bandwidth_audio, fs=48000):
    # Detect effective bandwidth of the first signal
    f_low, f_high = detect_bandwidth(low_bandwidth_audio, fs)
        
    # Replace the lower frequency of the second audio
    substituted_audio = replace_bandwidth(low_bandwidth_audio, high_bandwidth_audio, fs, f_low, f_high)

    # Optional: Smooth the transition
    smoothed_audio = smooth_transition(substituted_audio, low_bandwidth_audio, fs)
    return smoothed_audio
        
# Main process
if __name__ == "__main__":
    low_spectra_dir = 'LJSpeech_22k'
    upper_spectra_dir = 'LJSpeech_22k_hifi-sr_speech_g_03925000'
    output_dir = upper_spectra_dir+'_restored'
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)
        
    filelist = [file for file in os.listdir(low_spectra_dir) if file.endswith('.wav')]
    for audio_name in filelist:
        audio1, fs1 = load_audio(low_spectra_dir + "/" + audio_name)  # Source for effective bandwidth
        audio2, fs2 = load_audio(upper_spectra_dir + "/" + audio_name.replace('.wav', '_generated.wav'))  # Target audio to replace lower frequencies

        if fs1 != 48000 or fs2 != 48000:
            raise ValueError("Both audio files must have a sampling rate of 48 kHz.")

        # Detect effective bandwidth of the first signal
        f_low, f_high = detect_bandwidth(audio1, fs1)
        print(f"Effective bandwidth: {f_low} Hz to {f_high} Hz")

        # Replace the lower frequency of the second audio
        replaced_audio = replace_bandwidth(audio1, audio2, fs2, f_low, f_high)

        # Optional: Smooth the transition
        smoothed_audio = smooth_transition(replaced_audio, audio1, fs1)

        # Save the result
        save_audio(output_dir+"/"+audio_name, smoothed_audio, fs2)