Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,565 Bytes
8e8cd3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
import math
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from packaging.version import parse as V
from torch.nn import init
from torch.nn.parameter import Parameter
from models.mossformer_gan_se.fsmn import UniDeepFsmn
from models.mossformer_gan_se.conv_module import ConvModule
from models.mossformer_gan_se.mossformer import MossFormer
from models.mossformer_gan_se.se_layer import SELayer
from models.mossformer_gan_se.get_layer_from_string import get_layer
from models.mossformer_gan_se.discriminator import Discriminator
# Check if the installed version of PyTorch is 1.9.0 or higher
is_torch_1_9_plus = V(torch.__version__) >= V("1.9.0")
class MossFormerGAN_SE_16K(nn.Module):
"""
MossFormerGAN_SE_16K: A GAN-based speech enhancement model for 16kHz input audio.
This model integrates a synchronous attention network (SyncANet) for
feature extraction. Depending on the mode (train or inference), it may
also include a discriminator for adversarial training.
Args:
args (Namespace): Arguments containing configuration parameters,
including 'fft_len' and 'mode'.
"""
def __init__(self, args):
"""Initializes the MossFormerGAN_SE_16K model."""
super(MossFormerGAN_SE_16K, self).__init__()
# Initialize SyncANet with specified number of channels and features
self.model = SyncANet(num_channel=64, num_features=args.fft_len // 2 + 1)
# Initialize discriminator if in training mode
if args.mode == 'train':
self.discriminator = Discriminator(ndf=16)
else:
self.discriminator = None
def forward(self, x):
"""
Defines the forward pass of the MossFormerGAN_SE_16K model.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, num_channels, height, width].
Returns:
Tuple[torch.Tensor, torch.Tensor]: Output tensors representing the real and imaginary parts.
"""
output_real, output_imag = self.model(x) # Get real and imaginary outputs from the model
return output_real, output_imag # Return the outputs
class FSMN_Wrap(nn.Module):
"""
FSMN_Wrap: A wrapper around the UniDeepFsmn module to facilitate
integration into the larger model architecture.
Args:
nIn (int): Number of input features.
nHidden (int): Number of hidden features in the FSMN (default is 128).
lorder (int): Order of the FSMN (default is 20).
nOut (int): Number of output features (default is 128).
"""
def __init__(self, nIn, nHidden=128, lorder=20, nOut=128):
"""Initializes the FSMN_Wrap module with specified parameters."""
super(FSMN_Wrap, self).__init__()
# Initialize the UniDeepFsmn module
self.fsmn = UniDeepFsmn(nIn, nHidden, lorder, nHidden)
def forward(self, x):
"""
Defines the forward pass of the FSMN_Wrap module.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, time, 2].
Returns:
torch.Tensor: Output tensor reshaped to [batch_size, channels, height, time].
"""
# Shape of input x: [b, c, h, T, 2]
b, c, T, h = x.size()
# Permute x to reshape it for FSMN processing: [b, T, h, c]
x = x.permute(0, 2, 3, 1) # Change dimensions to [b, T, h, c]
x = torch.reshape(x, (b * T, h, c)) # Reshape to [b*T, h, c]
# Pass through the FSMN
output = self.fsmn(x) # output: [b*T, h, c]
# Reshape output back to original dimensions
output = torch.reshape(output, (b, T, h, c)) # output: [b, T, h, c]
return output.permute(0, 3, 1, 2) # Final output shape: [b, c, h, T]
class DilatedDenseNet(nn.Module):
"""
DilatedDenseNet: A dilated dense network for feature extraction.
This network consists of a series of dilated convolutions organized in a dense block structure,
allowing for efficient feature reuse and capturing multi-scale information.
Args:
depth (int): The number of layers in the dense block (default is 4).
in_channels (int): The number of input channels for the first layer (default is 64).
"""
def __init__(self, depth=4, in_channels=64):
"""Initializes the DilatedDenseNet with specified depth and input channels."""
super(DilatedDenseNet, self).__init__()
self.depth = depth
self.in_channels = in_channels
self.pad = nn.ConstantPad2d((1, 1, 1, 0), value=0.) # Padding for the first layer
self.twidth = 2 # Temporal width for convolutions
self.kernel_size = (self.twidth, 3) # Kernel size for convolutions
# Initialize dilated convolutions, padding, normalization, and FSMN for each layer
for i in range(self.depth):
dil = 2 ** i # Dilation factor for the current layer
pad_length = self.twidth + (dil - 1) * (self.twidth - 1) - 1 # Calculate padding length
setattr(self, 'pad{}'.format(i + 1), nn.ConstantPad2d((1, 1, pad_length, 0), value=0.))
setattr(self, 'conv{}'.format(i + 1),
nn.Conv2d(self.in_channels * (i + 1), self.in_channels, kernel_size=self.kernel_size,
dilation=(dil, 1))) # Convolution layer
setattr(self, 'norm{}'.format(i + 1), nn.InstanceNorm2d(in_channels, affine=True)) # Normalization
setattr(self, 'prelu{}'.format(i + 1), nn.PReLU(self.in_channels)) # Activation function
setattr(self, 'fsmn{}'.format(i + 1), FSMN_Wrap(nIn=self.in_channels, nHidden=self.in_channels, lorder=5, nOut=self.in_channels))
def forward(self, x):
"""
Defines the forward pass for the DilatedDenseNet.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, width].
Returns:
torch.Tensor: Output tensor after processing through the dense network.
"""
skip = x # Initialize skip connection with input
for i in range(self.depth):
# Apply padding, convolution, normalization, activation, and FSMN in sequence
out = getattr(self, 'pad{}'.format(i + 1))(skip)
out = getattr(self, 'conv{}'.format(i + 1))(out)
out = getattr(self, 'norm{}'.format(i + 1))(out)
out = getattr(self, 'prelu{}'.format(i + 1))(out)
out = getattr(self, 'fsmn{}'.format(i + 1))(out)
skip = torch.cat([out, skip], dim=1) # Concatenate outputs for dense connectivity
return out # Return the final output
class DenseEncoder(nn.Module):
"""
DenseEncoder: A dense encoding module for feature extraction from input data.
This module consists of a series of convolutional layers followed by a
dilated dense network for robust feature learning.
Args:
in_channel (int): Number of input channels for the encoder.
channels (int): Number of output channels for each convolutional layer (default is 64).
"""
def __init__(self, in_channel, channels=64):
"""Initializes the DenseEncoder with specified input channels and feature size."""
super(DenseEncoder, self).__init__()
self.conv_1 = nn.Sequential(
nn.Conv2d(in_channel, channels, (1, 1), (1, 1)), # Initial convolution layer
nn.InstanceNorm2d(channels, affine=True), # Normalization layer
nn.PReLU(channels) # Activation function
)
self.dilated_dense = DilatedDenseNet(depth=4, in_channels=channels) # Dilated Dense Network
self.conv_2 = nn.Sequential(
nn.Conv2d(channels, channels, (1, 3), (1, 2), padding=(0, 1)), # Second convolution layer
nn.InstanceNorm2d(channels, affine=True), # Normalization layer
nn.PReLU(channels) # Activation function
)
def forward(self, x):
"""
Defines the forward pass for the DenseEncoder.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, in_channel, height, width].
Returns:
torch.Tensor: Output tensor after processing through the encoder.
"""
x = self.conv_1(x) # Process through the first convolutional layer
x = self.dilated_dense(x) # Process through the dilated dense network
x = self.conv_2(x) # Process through the second convolutional layer
return x # Return the final output
class SPConvTranspose2d(nn.Module):
"""
SPConvTranspose2d: A spatially separable convolution transpose layer.
This module implements a transposed convolution operation with spatial separability,
allowing for efficient upsampling and feature extraction.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_size (tuple): Size of the convolution kernel.
r (int): Upsampling rate (default is 1).
"""
def __init__(self, in_channels, out_channels, kernel_size, r=1):
"""Initializes the SPConvTranspose2d with specified parameters."""
super(SPConvTranspose2d, self).__init__()
self.pad1 = nn.ConstantPad2d((1, 1, 0, 0), value=0.) # Padding for input
self.out_channels = out_channels # Store number of output channels
self.conv = nn.Conv2d(in_channels, out_channels * r, kernel_size=kernel_size, stride=(1, 1)) # Convolution layer
self.r = r # Store the upsampling rate
def forward(self, x):
"""
Defines the forward pass for the SPConvTranspose2d module.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, in_channels, height, width].
Returns:
torch.Tensor: Output tensor after transposed convolution operation.
"""
x = self.pad1(x) # Apply padding to input
out = self.conv(x) # Perform convolution operation
batch_size, nchannels, H, W = out.shape # Get output shape
out = out.view((batch_size, self.r, nchannels // self.r, H, W)) # Reshape output for separation
out = out.permute(0, 2, 3, 4, 1) # Rearrange dimensions
out = out.contiguous().view((batch_size, nchannels // self.r, H, -1)) # Final output shape
return out # Return the final output
class MaskDecoder(nn.Module):
"""
MaskDecoder: A decoder module for estimating masks used in audio processing.
This module utilizes a dilated dense network to capture features and
applies sub-pixel convolution to upscale the output. It produces
a mask that can be applied to the magnitude of audio signals.
Args:
num_features (int): The number of features in the output mask.
num_channel (int): The number of channels in intermediate layers (default is 64).
out_channel (int): The number of output channels for the final output mask (default is 1).
"""
def __init__(self, num_features, num_channel=64, out_channel=1):
"""Initializes the MaskDecoder with specified parameters."""
super(MaskDecoder, self).__init__()
self.dense_block = DilatedDenseNet(depth=4, in_channels=num_channel) # Dense feature extraction
self.sub_pixel = SPConvTranspose2d(num_channel, num_channel, (1, 3), 2) # Sub-pixel convolution for upsampling
self.conv_1 = nn.Conv2d(num_channel, out_channel, (1, 2)) # Convolution layer to produce mask
self.norm = nn.InstanceNorm2d(out_channel, affine=True) # Normalization layer
self.prelu = nn.PReLU(out_channel) # Activation function
self.final_conv = nn.Conv2d(out_channel, out_channel, (1, 1)) # Final convolution layer
self.prelu_out = nn.PReLU(num_features, init=-0.25) # Final activation for output mask
def forward(self, x):
"""
Defines the forward pass for the MaskDecoder.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, width].
Returns:
torch.Tensor: Output mask tensor after processing through the decoder.
"""
x = self.dense_block(x) # Feature extraction using dilated dense block
x = self.sub_pixel(x) # Upsample the features
x = self.conv_1(x) # Convolution to estimate the mask
x = self.prelu(self.norm(x)) # Apply normalization and activation
x = self.final_conv(x).permute(0, 3, 2, 1).squeeze(-1) # Final convolution and rearrangement
return self.prelu_out(x).permute(0, 2, 1).unsqueeze(1) # Final output shape
class ComplexDecoder(nn.Module):
"""
ComplexDecoder: A decoder module for estimating complex-valued outputs.
This module processes features through a dilated dense network and a
sub-pixel convolution layer to generate two output channels representing
the real and imaginary parts of the complex output.
Args:
num_channel (int): The number of channels in intermediate layers (default is 64).
"""
def __init__(self, num_channel=64):
"""Initializes the ComplexDecoder with specified parameters."""
super(ComplexDecoder, self).__init__()
self.dense_block = DilatedDenseNet(depth=4, in_channels=num_channel) # Dense feature extraction
self.sub_pixel = SPConvTranspose2d(num_channel, num_channel, (1, 3), 2) # Sub-pixel convolution for upsampling
self.prelu = nn.PReLU(num_channel) # Activation function
self.norm = nn.InstanceNorm2d(num_channel, affine=True) # Normalization layer
self.conv = nn.Conv2d(num_channel, 2, (1, 2)) # Convolution layer to produce complex outputs
def forward(self, x):
"""
Defines the forward pass for the ComplexDecoder.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, width].
Returns:
torch.Tensor: Output tensor containing real and imaginary parts.
"""
x = self.dense_block(x) # Feature extraction using dilated dense block
x = self.sub_pixel(x) # Upsample the features
x = self.prelu(self.norm(x)) # Apply normalization and activation
x = self.conv(x) # Generate complex output
return x # Return the output tensor
class SyncANet(nn.Module):
"""
SyncANet: A synchronous audio processing network for separating audio signals.
This network integrates dense encoding, synchronous attention blocks,
and separate decoders for estimating masks and complex-valued outputs.
Args:
num_channel (int): The number of channels in the network (default is 64).
num_features (int): The number of features for the mask decoder (default is 201).
"""
def __init__(self, num_channel=64, num_features=201):
"""Initializes the SyncANet with specified parameters."""
super(SyncANet, self).__init__()
self.dense_encoder = DenseEncoder(in_channel=3, channels=num_channel) # Dense encoder for input
self.n_layers = 6 # Number of synchronous attention layers
self.blocks = nn.ModuleList([]) # List to hold attention blocks
# Initialize attention blocks
for _ in range(self.n_layers):
self.blocks.append(
SyncANetBlock(
emb_dim=num_channel,
emb_ks=2,
emb_hs=1,
n_freqs=int(num_features//2)+1,
hidden_channels=num_channel*2,
n_head=4,
approx_qk_dim=512,
activation='prelu',
eps=1.0e-5,
)
)
self.mask_decoder = MaskDecoder(num_features, num_channel=num_channel, out_channel=1) # Mask decoder
self.complex_decoder = ComplexDecoder(num_channel=num_channel) # Complex decoder
def forward(self, x):
"""
Defines the forward pass for the SyncANet.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, 2, height, width] representing complex signals.
Returns:
list: List containing the real and imaginary parts of the output tensor.
"""
out_list = [] # List to store outputs
mag = torch.sqrt(x[:, 0, :, :]**2 + x[:, 1, :, :]**2).unsqueeze(1) # Calculate magnitude
noisy_phase = torch.angle(torch.complex(x[:, 0, :, :], x[:, 1, :, :])).unsqueeze(1) # Calculate phase
x_in = torch.cat([mag, x], dim=1) # Concatenate magnitude and input for processing
x = self.dense_encoder(x_in) # Feature extraction using dense encoder
for ii in range(self.n_layers):
x = self.blocks[ii](x) # Pass through attention blocks
mask = self.mask_decoder(x) # Estimate mask from features
out_mag = mask * mag # Apply mask to magnitude
complex_out = self.complex_decoder(x) # Generate complex output
mag_real = out_mag * torch.cos(noisy_phase) # Real part of the output
mag_imag = out_mag * torch.sin(noisy_phase) # Imaginary part of the output
final_real = mag_real + complex_out[:, 0, :, :].unsqueeze(1) # Final real output
final_imag = mag_imag + complex_out[:, 1, :, :].unsqueeze(1) # Final imaginary output
out_list.append(final_real) # Append real output to list
out_list.append(final_imag) # Append imaginary output to list
return out_list # Return list of outputs
class FFConvM(nn.Module):
"""
FFConvM: A feedforward convolutional module combining linear layers, normalization,
non-linear activation, and convolution operations.
This module processes input tensors through a sequence of transformations, including
normalization, a linear layer with a SiLU activation, a convolutional operation, and
dropout for regularization.
Args:
dim_in (int): The number of input features (dimensionality of input).
dim_out (int): The number of output features (dimensionality of output).
norm_klass (nn.Module): The normalization class to be applied (default is nn.LayerNorm).
dropout (float): The dropout probability for regularization (default is 0.1).
"""
def __init__(
self,
dim_in,
dim_out,
norm_klass=nn.LayerNorm,
dropout=0.1
):
"""Initializes the FFConvM with specified parameters."""
super().__init__()
# Define the sequential model
self.mdl = nn.Sequential(
norm_klass(dim_in), # Apply normalization to input
nn.Linear(dim_in, dim_out), # Linear transformation to dim_out
nn.SiLU(), # Non-linear activation using SiLU (Sigmoid Linear Unit)
ConvModule(dim_out), # Convolution operation on the output
nn.Dropout(dropout) # Dropout layer for regularization
)
def forward(self, x):
"""
Defines the forward pass for the FFConvM.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, dim_in].
Returns:
torch.Tensor: Output tensor of shape [batch_size, dim_out] after processing.
"""
output = self.mdl(x) # Pass input through the sequential model
return output # Return the processed output
class SyncANetBlock(nn.Module):
"""
SyncANetBlock implements a modified version of the MossFormer (GatedFormer) module,
inspired by the TF-GridNet architecture (https://arxiv.org/abs/2211.12433).
It combines gated triple-attention schemes and Finite Short Memory Network (FSMN) modules
to enhance computational efficiency and overall performance in audio processing tasks.
Attributes:
emb_dim (int): Dimensionality of the embedding.
emb_ks (int): Kernel size for embeddings.
emb_hs (int): Stride size for embeddings.
n_freqs (int): Number of frequency bands.
hidden_channels (int): Number of hidden channels.
n_head (int): Number of attention heads.
approx_qk_dim (int): Approximate dimension for query-key matrices.
activation (str): Activation function to use.
eps (float): Small value to avoid division by zero in normalization layers.
"""
def __getitem__(self, key):
"""
Allows accessing module attributes using indexing.
Args:
key: Attribute name to retrieve.
Returns:
The requested attribute.
"""
return getattr(self, key)
def __init__(
self,
emb_dim,
emb_ks,
emb_hs,
n_freqs,
hidden_channels,
n_head=4,
approx_qk_dim=512,
activation="prelu",
eps=1e-5,
):
"""
Initializes the SyncANetBlock with the specified parameters.
Args:
emb_dim (int): Dimensionality of the embedding.
emb_ks (int): Kernel size for embeddings.
emb_hs (int): Stride size for embeddings.
n_freqs (int): Number of frequency bands.
hidden_channels (int): Number of hidden channels.
n_head (int): Number of attention heads. Default is 4.
approx_qk_dim (int): Approximate dimension for query-key matrices. Default is 512.
activation (str): Activation function to use. Default is "prelu".
eps (float): Small value to avoid division by zero in normalization layers. Default is 1e-5.
"""
super().__init__()
in_channels = emb_dim * emb_ks # Calculate the number of input channels
## Intra modules: Modules for internal processing within the block
self.Fconv = nn.Conv2d(emb_dim, in_channels, kernel_size=(1, emb_ks), stride=(1, 1), groups=emb_dim)
self.intra_norm = LayerNormalization4D(emb_dim, eps=eps) # Layer normalization
self.intra_to_u = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.intra_to_v = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.intra_rnn = self._build_repeats(in_channels, hidden_channels, 20, hidden_channels, repeats=1) # FSMN layers
self.intra_mossformer = MossFormer(dim=emb_dim, group_size=n_freqs) # MossFormer module
# Linear transformation for intra module output
self.intra_linear = nn.ConvTranspose1d(
hidden_channels, emb_dim, emb_ks, stride=emb_hs
)
self.intra_se = SELayer(channel=emb_dim, reduction=1) # Squeeze-and-excitation layer
## Inter modules: Modules for external processing between blocks
self.inter_norm = LayerNormalization4D(emb_dim, eps=eps) # Layer normalization
self.inter_to_u = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.inter_to_v = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.inter_rnn = self._build_repeats(in_channels, hidden_channels, 20, hidden_channels, repeats=1) # FSMN layers
self.inter_mossformer = MossFormer(dim=emb_dim, group_size=256) # MossFormer module
# Linear transformation for inter module output
self.inter_linear = nn.ConvTranspose1d(
hidden_channels, emb_dim, emb_ks, stride=emb_hs
)
self.inter_se = SELayer(channel=emb_dim, reduction=1) # Squeeze-and-excitation layer
# Approximate query-key dimension calculation
E = math.ceil(approx_qk_dim * 1.0 / n_freqs)
assert emb_dim % n_head == 0 # Ensure emb_dim is divisible by n_head
# Define attention convolution layers for each head
for ii in range(n_head):
self.add_module(
f"attn_conv_Q_{ii}",
nn.Sequential(
nn.Conv2d(emb_dim, E, 1),
get_layer(activation)(),
LayerNormalization4DCF((E, n_freqs), eps=eps),
),
)
self.add_module(
f"attn_conv_K_{ii}",
nn.Sequential(
nn.Conv2d(emb_dim, E, 1),
get_layer(activation)(),
LayerNormalization4DCF((E, n_freqs), eps=eps),
),
)
self.add_module(
f"attn_conv_V_{ii}",
nn.Sequential(
nn.Conv2d(emb_dim, emb_dim // n_head, 1),
get_layer(activation)(),
LayerNormalization4DCF((emb_dim // n_head, n_freqs), eps=eps),
),
)
# Final attention concatenation projection
self.add_module(
"attn_concat_proj",
nn.Sequential(
nn.Conv2d(emb_dim, emb_dim, 1),
get_layer(activation)(),
LayerNormalization4DCF((emb_dim, n_freqs), eps=eps),
),
)
# Store parameters for further processing
self.emb_dim = emb_dim
self.emb_ks = emb_ks
self.emb_hs = emb_hs
self.n_head = n_head
def _build_repeats(self, in_channels, out_channels, lorder, hidden_size, repeats=1):
"""
Constructs a sequence of UniDeepFSMN modules.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
lorder (int): Order of the filter.
hidden_size (int): Hidden size for the FSMN.
repeats (int): Number of times to repeat the module. Default is 1.
Returns:
nn.Sequential: A sequence of UniDeepFSMN modules.
"""
repeats = [
UniDeepFsmn(in_channels, out_channels, lorder, hidden_size)
for _ in range(repeats)
]
return nn.Sequential(*repeats)
def forward(self, x):
"""Performs a forward pass through the SyncANetBlock.
Args:
x (torch.Tensor): Input tensor of shape [B, C, T, Q] where
B is batch size, C is number of channels,
T is temporal dimension, and Q is frequency dimension.
Returns:
torch.Tensor: Output tensor of the same shape [B, C, T, Q].
"""
B, C, old_T, old_Q = x.shape
# Calculate new dimensions for padding
T = math.ceil((old_T - self.emb_ks) / self.emb_hs) * self.emb_hs + self.emb_ks
Q = math.ceil((old_Q - self.emb_ks) / self.emb_hs) * self.emb_hs + self.emb_ks
# Pad the input tensor to match the new dimensions
x = F.pad(x, (0, Q - old_Q, 0, T - old_T))
# Intra-process
input_ = x
intra_rnn = self.intra_norm(input_) # Normalize input for intra-process
intra_rnn = self.Fconv(intra_rnn) # Apply depthwise convolution
intra_rnn = (
intra_rnn.transpose(1, 2).contiguous().view(B * T, C * self.emb_ks, -1)
) # Reshape for subsequent operations
intra_rnn = intra_rnn.transpose(1, 2) # Reshape for processing
intra_rnn_u = self.intra_to_u(intra_rnn) # Linear transformation
intra_rnn_v = self.intra_to_v(intra_rnn) # Linear transformation
intra_rnn_u = self.intra_rnn(intra_rnn_u) # Apply FSMN
intra_rnn = intra_rnn_v * intra_rnn_u # Element-wise multiplication
intra_rnn = intra_rnn.transpose(1, 2) # Reshape back
intra_rnn = self.intra_linear(intra_rnn) # Linear projection
intra_rnn = intra_rnn.transpose(1, 2) # Reshape for mossformer
intra_rnn = intra_rnn.view([B, T, Q, C]) # Reshape for mossformer
intra_rnn = self.intra_mossformer(intra_rnn) # Apply MossFormer
intra_rnn = intra_rnn.transpose(1, 2) # Reshape back
intra_rnn = intra_rnn.view([B, T, C, Q]) # Reshape back
intra_rnn = intra_rnn.transpose(1, 2).contiguous() # Final reshape
intra_rnn = self.intra_se(intra_rnn) # Squeeze-and-excitation layer
intra_rnn = intra_rnn + input_ # Residual connection
# Inter-process
input_ = intra_rnn
inter_rnn = self.inter_norm(input_) # Normalize input for inter-process
inter_rnn = (
inter_rnn.permute(0, 3, 1, 2).contiguous().view(B * Q, C, T)
) # Reshape for processing
inter_rnn = F.unfold(
inter_rnn[..., None], (self.emb_ks, 1), stride=(self.emb_hs, 1)
) # Extract sliding windows
inter_rnn = inter_rnn.transpose(1, 2) # Reshape for further processing
inter_rnn_u = self.inter_to_u(inter_rnn) # Linear transformation
inter_rnn_v = self.inter_to_v(inter_rnn) # Linear transformation
inter_rnn_u = self.inter_rnn(inter_rnn_u) # Apply FSMN
inter_rnn = inter_rnn_v * inter_rnn_u # Element-wise multiplication
inter_rnn = inter_rnn.transpose(1, 2) # Reshape back
inter_rnn = self.inter_linear(inter_rnn) # Linear projection
inter_rnn = inter_rnn.transpose(1, 2) # Reshape for mossformer
inter_rnn = inter_rnn.view([B, Q, T, C]) # Reshape for mossformer
inter_rnn = self.inter_mossformer(inter_rnn) # Apply MossFormer
inter_rnn = inter_rnn.transpose(1, 2) # Reshape back
inter_rnn = inter_rnn.view([B, Q, C, T]) # Final reshape
inter_rnn = inter_rnn.permute(0, 2, 3, 1).contiguous() # Permute for SE layer
inter_rnn = self.inter_se(inter_rnn) # Squeeze-and-excitation layer
inter_rnn = inter_rnn + input_ # Residual connection
# Attention mechanism
inter_rnn = inter_rnn[..., :old_T, :old_Q] # Trim to original shape
batch = inter_rnn
all_Q, all_K, all_V = [], [], []
# Compute query, key, and value for each attention head
for ii in range(self.n_head):
all_Q.append(self["attn_conv_Q_%d" % ii](batch)) # Query
all_K.append(self["attn_conv_K_%d" % ii](batch)) # Key
all_V.append(self["attn_conv_V_%d" % ii](batch)) # Value
Q = torch.cat(all_Q, dim=0) # Concatenate all queries
K = torch.cat(all_K, dim=0) # Concatenate all keys
V = torch.cat(all_V, dim=0) # Concatenate all values
# Reshape for attention calculation
Q = Q.transpose(1, 2)
Q = Q.flatten(start_dim=2) # Flatten for attention calculation
K = K.transpose(1, 2)
K = K.flatten(start_dim=2) # Flatten for attention calculation
V = V.transpose(1, 2) # Reshape for attention calculation
old_shape = V.shape
V = V.flatten(start_dim=2) # Flatten for attention calculation
emb_dim = Q.shape[-1]
# Compute scaled dot-product attention
attn_mat = torch.matmul(Q, K.transpose(1, 2)) / (emb_dim**0.5) # Attention matrix
attn_mat = F.softmax(attn_mat, dim=2) # Softmax over attention scores
V = torch.matmul(attn_mat, V) # Weighted sum of values
V = V.reshape(old_shape) # Reshape back
V = V.transpose(1, 2) # Final reshaping
emb_dim = V.shape[1]
batch = V.view([self.n_head, B, emb_dim, old_T, -1]) # Reshape for multi-head
batch = batch.transpose(0, 1) # Permute for batch processing
batch = batch.contiguous().view(
[B, self.n_head * emb_dim, old_T, -1]
) # Final reshape for concatenation
batch = self["attn_concat_proj"](batch) # Final linear projection
# Combine inter-process result with attention output
out = batch + inter_rnn
return out # Return the output tensor
class LayerNormalization4D(nn.Module):
"""
LayerNormalization4D applies layer normalization to 4D tensors
(e.g., [B, C, T, F]), where B is the batch size, C is the number of channels,
T is the temporal dimension, and F is the frequency dimension.
Attributes:
gamma (torch.Parameter): Learnable scaling parameter.
beta (torch.Parameter): Learnable shifting parameter.
eps (float): Small value for numerical stability during variance calculation.
"""
def __init__(self, input_dimension, eps=1e-5):
"""
Initializes the LayerNormalization4D layer.
Args:
input_dimension (int): The number of channels in the input tensor.
eps (float, optional): Small constant added for numerical stability.
"""
super().__init__()
param_size = [1, input_dimension, 1, 1]
self.gamma = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Scale parameter
self.beta = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Shift parameter
init.ones_(self.gamma) # Initialize gamma to 1
init.zeros_(self.beta) # Initialize beta to 0
self.eps = eps # Set the epsilon value
def forward(self, x):
"""
Forward pass for the layer normalization.
Args:
x (torch.Tensor): Input tensor of shape [B, C, T, F].
Returns:
torch.Tensor: Normalized output tensor of the same shape.
"""
if x.ndim == 4:
_, C, _, _ = x.shape # Extract the number of channels
stat_dim = (1,) # Dimension to compute statistics over
else:
raise ValueError("Expect x to have 4 dimensions, but got {}".format(x.ndim))
# Compute mean and standard deviation along the specified dimension
mu_ = x.mean(dim=stat_dim, keepdim=True) # [B, 1, T, F]
std_ = torch.sqrt(
x.var(dim=stat_dim, unbiased=False, keepdim=True) + self.eps
) # [B, 1, T, F]
# Normalize the input tensor and apply learnable parameters
x_hat = ((x - mu_) / std_) * self.gamma + self.beta # [B, C, T, F]
return x_hat
class LayerNormalization4DCF(nn.Module):
"""
LayerNormalization4DCF applies layer normalization to 4D tensors
(e.g., [B, C, T, F]) specifically designed for DCF (Dynamic Channel Frequency) inputs.
Attributes:
gamma (torch.Parameter): Learnable scaling parameter.
beta (torch.Parameter): Learnable shifting parameter.
eps (float): Small value for numerical stability during variance calculation.
"""
def __init__(self, input_dimension, eps=1e-5):
"""
Initializes the LayerNormalization4DCF layer.
Args:
input_dimension (tuple): A tuple containing the dimensions of the input tensor
(number of channels, frequency dimension).
eps (float, optional): Small constant added for numerical stability.
"""
super().__init__()
assert len(input_dimension) == 2, "Input dimension must be a tuple of length 2."
param_size = [1, input_dimension[0], 1, input_dimension[1]] # Shape based on input dimensions
self.gamma = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Scale parameter
self.beta = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Shift parameter
init.ones_(self.gamma) # Initialize gamma to 1
init.zeros_(self.beta) # Initialize beta to 0
self.eps = eps # Set the epsilon value
def forward(self, x):
"""
Forward pass for the layer normalization.
Args:
x (torch.Tensor): Input tensor of shape [B, C, T, F].
Returns:
torch.Tensor: Normalized output tensor of the same shape.
"""
if x.ndim == 4:
stat_dim = (1, 3) # Dimensions to compute statistics over
else:
raise ValueError("Expect x to have 4 dimensions, but got {}".format(x.ndim))
# Compute mean and standard deviation along the specified dimensions
mu_ = x.mean(dim=stat_dim, keepdim=True) # [B, 1, T, 1]
std_ = torch.sqrt(
x.var(dim=stat_dim, unbiased=False, keepdim=True) + self.eps
) # [B, 1, T, F]
# Normalize the input tensor and apply learnable parameters
x_hat = ((x - mu_) / std_) * self.gamma + self.beta # [B, C, T, F]
return x_hat
|