Spaces:
Running
Running
| """Modified from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py | |
| """ | |
| import math | |
| from typing import Any, Callable, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.models.attention import FeedForward | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from einops import rearrange, repeat | |
| from torch import nn | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| class CrossAttention(nn.Module): | |
| r""" | |
| A cross attention layer. | |
| Parameters: | |
| query_dim (`int`): The number of channels in the query. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
| heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
| dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| bias (`bool`, *optional*, defaults to False): | |
| Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
| """ | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias=False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| added_kv_proj_dim: Optional[int] = None, | |
| norm_num_groups: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.upcast_attention = upcast_attention | |
| self.upcast_softmax = upcast_softmax | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self.sliceable_head_dim = heads | |
| self._slice_size = None | |
| self._use_memory_efficient_attention_xformers = False | |
| self.added_kv_proj_dim = added_kv_proj_dim | |
| if norm_num_groups is not None: | |
| self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
| else: | |
| self.group_norm = None | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
| self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
| self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
| if self.added_kv_proj_dim is not None: | |
| self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
| self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
| self.to_out.append(nn.Dropout(dropout)) | |
| def set_use_memory_efficient_attention_xformers( | |
| self, valid: bool, attention_op: Optional[Callable] = None | |
| ) -> None: | |
| self._use_memory_efficient_attention_xformers = valid | |
| def reshape_heads_to_batch_dim(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def reshape_batch_dim_to_heads(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def set_attention_slice(self, slice_size): | |
| if slice_size is not None and slice_size > self.sliceable_head_dim: | |
| raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
| self._slice_size = slice_size | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = self.reshape_heads_to_batch_dim(query) | |
| if self.added_kv_proj_dim is not None: | |
| key = self.to_k(hidden_states) | |
| value = self.to_v(hidden_states) | |
| encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
| key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |
| def _attention(self, query, key, value, attention_mask=None): | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| attention_scores = torch.baddbmm( | |
| torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
| query, | |
| key.transpose(-1, -2), | |
| beta=0, | |
| alpha=self.scale, | |
| ) | |
| if attention_mask is not None: | |
| attention_scores = attention_scores + attention_mask | |
| if self.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| # cast back to the original dtype | |
| attention_probs = attention_probs.to(value.dtype) | |
| # compute attention output | |
| hidden_states = torch.bmm(attention_probs, value) | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
| batch_size_attention = query.shape[0] | |
| hidden_states = torch.zeros( | |
| (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
| ) | |
| slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
| for i in range(hidden_states.shape[0] // slice_size): | |
| start_idx = i * slice_size | |
| end_idx = (i + 1) * slice_size | |
| query_slice = query[start_idx:end_idx] | |
| key_slice = key[start_idx:end_idx] | |
| if self.upcast_attention: | |
| query_slice = query_slice.float() | |
| key_slice = key_slice.float() | |
| attn_slice = torch.baddbmm( | |
| torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
| query_slice, | |
| key_slice.transpose(-1, -2), | |
| beta=0, | |
| alpha=self.scale, | |
| ) | |
| if attention_mask is not None: | |
| attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
| if self.upcast_softmax: | |
| attn_slice = attn_slice.float() | |
| attn_slice = attn_slice.softmax(dim=-1) | |
| # cast back to the original dtype | |
| attn_slice = attn_slice.to(value.dtype) | |
| attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
| hidden_states[start_idx:end_idx] = attn_slice | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
| # TODO attention_mask | |
| query = query.contiguous() | |
| key = key.contiguous() | |
| value = value.contiguous() | |
| hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| def zero_module(module): | |
| # Zero out the parameters of a module and return it. | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def get_motion_module( | |
| in_channels, | |
| motion_module_type: str, | |
| motion_module_kwargs: dict, | |
| ): | |
| if motion_module_type == "Vanilla": | |
| return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,) | |
| elif motion_module_type == "VanillaGrid": | |
| return VanillaTemporalModule(in_channels=in_channels, grid=True, **motion_module_kwargs,) | |
| else: | |
| raise ValueError | |
| class VanillaTemporalModule(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads = 8, | |
| num_transformer_block = 2, | |
| attention_block_types =( "Temporal_Self", "Temporal_Self" ), | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 4096, | |
| temporal_attention_dim_div = 1, | |
| zero_initialize = True, | |
| block_size = 1, | |
| grid = False, | |
| ): | |
| super().__init__() | |
| self.temporal_transformer = TemporalTransformer3DModel( | |
| in_channels=in_channels, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, | |
| num_layers=num_transformer_block, | |
| attention_block_types=attention_block_types, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| grid=grid, | |
| block_size=block_size, | |
| ) | |
| if zero_initialize: | |
| self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) | |
| def forward(self, input_tensor, encoder_hidden_states=None, attention_mask=None, anchor_frame_idx=None): | |
| hidden_states = input_tensor | |
| hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) | |
| output = hidden_states | |
| return output | |
| class TemporalTransformer3DModel(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| num_attention_heads, | |
| attention_head_dim, | |
| num_layers, | |
| attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
| dropout = 0.0, | |
| norm_num_groups = 32, | |
| cross_attention_dim = 768, | |
| activation_fn = "geglu", | |
| attention_bias = False, | |
| upcast_attention = False, | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 4096, | |
| grid = False, | |
| block_size = 1, | |
| ): | |
| super().__init__() | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| self.block_size = block_size | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| dim=inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| attention_block_types=attention_block_types, | |
| dropout=dropout, | |
| norm_num_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| attention_bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| block_size=block_size, | |
| grid=grid, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| self.proj_out = nn.Linear(inner_dim, in_channels) | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| batch, channel, height, weight = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Transformer Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, height=height, weight=weight) | |
| # output | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| return output | |
| class TemporalTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| attention_block_types = ( "Temporal_Self", "Temporal_Self", ), | |
| dropout = 0.0, | |
| norm_num_groups = 32, | |
| cross_attention_dim = 768, | |
| activation_fn = "geglu", | |
| attention_bias = False, | |
| upcast_attention = False, | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 4096, | |
| block_size = 1, | |
| grid = False, | |
| ): | |
| super().__init__() | |
| attention_blocks = [] | |
| norms = [] | |
| for block_name in attention_block_types: | |
| attention_blocks.append( | |
| VersatileAttention( | |
| attention_mode=block_name.split("_")[0], | |
| cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| cross_frame_attention_mode=cross_frame_attention_mode, | |
| temporal_position_encoding=temporal_position_encoding, | |
| temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
| block_size=block_size, | |
| grid=grid, | |
| ) | |
| ) | |
| norms.append(nn.LayerNorm(dim)) | |
| self.attention_blocks = nn.ModuleList(attention_blocks) | |
| self.norms = nn.ModuleList(norms) | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
| self.ff_norm = nn.LayerNorm(dim) | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, height=None, weight=None): | |
| for attention_block, norm in zip(self.attention_blocks, self.norms): | |
| norm_hidden_states = norm(hidden_states) | |
| hidden_states = attention_block( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, | |
| video_length=video_length, | |
| height=height, | |
| weight=weight, | |
| ) + hidden_states | |
| hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
| output = hidden_states | |
| return output | |
| class PositionalEncoding(nn.Module): | |
| def __init__( | |
| self, | |
| d_model, | |
| dropout = 0., | |
| max_len = 4096 | |
| ): | |
| super().__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| position = torch.arange(max_len).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
| pe = torch.zeros(1, max_len, d_model) | |
| pe[0, :, 0::2] = torch.sin(position * div_term) | |
| pe[0, :, 1::2] = torch.cos(position * div_term) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| x = x + self.pe[:, :x.size(1)] | |
| return self.dropout(x) | |
| class VersatileAttention(CrossAttention): | |
| def __init__( | |
| self, | |
| attention_mode = None, | |
| cross_frame_attention_mode = None, | |
| temporal_position_encoding = False, | |
| temporal_position_encoding_max_len = 4096, | |
| grid = False, | |
| block_size = 1, | |
| *args, **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| assert attention_mode == "Temporal" | |
| self.attention_mode = attention_mode | |
| self.is_cross_attention = kwargs["cross_attention_dim"] is not None | |
| self.block_size = block_size | |
| self.grid = grid | |
| self.pos_encoder = PositionalEncoding( | |
| kwargs["query_dim"], | |
| dropout=0., | |
| max_len=temporal_position_encoding_max_len | |
| ) if (temporal_position_encoding and attention_mode == "Temporal") else None | |
| def extra_repr(self): | |
| return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, height=None, weight=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| if self.attention_mode == "Temporal": | |
| # for add pos_encoder | |
| _, before_d, _c = hidden_states.size() | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
| if self.pos_encoder is not None: | |
| hidden_states = self.pos_encoder(hidden_states) | |
| if self.grid: | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> b f d c", f=video_length, d=before_d) | |
| hidden_states = rearrange(hidden_states, "b f (h w) c -> b f h w c", h=height, w=weight) | |
| hidden_states = rearrange(hidden_states, "b f (h n) (w m) c -> (b h w) (f n m) c", n=self.block_size, m=self.block_size) | |
| d = before_d // self.block_size // self.block_size | |
| else: | |
| d = before_d | |
| encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states | |
| else: | |
| raise NotImplementedError | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = self.reshape_heads_to_batch_dim(query) | |
| if self.added_kv_proj_dim is not None: | |
| raise NotImplementedError | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| bs = 512 | |
| new_hidden_states = [] | |
| for i in range(0, query.shape[0], bs): | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query[i : i + bs], key[i : i + bs], value[i : i + bs], attention_mask[i : i + bs] if attention_mask is not None else attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query[i : i + bs].shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query[i : i + bs], key[i : i + bs], value[i : i + bs], attention_mask[i : i + bs] if attention_mask is not None else attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query[i : i + bs], key[i : i + bs], value[i : i + bs], sequence_length, dim, attention_mask[i : i + bs] if attention_mask is not None else attention_mask) | |
| new_hidden_states.append(hidden_states) | |
| hidden_states = torch.cat(new_hidden_states, dim = 0) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| if self.attention_mode == "Temporal": | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
| if self.grid: | |
| hidden_states = rearrange(hidden_states, "(b f n m) (h w) c -> (b f) h n w m c", f=video_length, n=self.block_size, m=self.block_size, h=height // self.block_size, w=weight // self.block_size) | |
| hidden_states = rearrange(hidden_states, "b h n w m c -> b (h n) (w m) c") | |
| hidden_states = rearrange(hidden_states, "b h w c -> b (h w) c") | |
| return hidden_states |