Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ repo = "stabilityai/stable-diffusion-3-medium"
|
|
15 |
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16, revision="refs/pr/26",token=os.environ["TOKEN"]).to(device)
|
16 |
|
17 |
model_id = "microsoft/Phi-3-medium-128k-instruct"
|
18 |
-
|
19 |
model_id,
|
20 |
device_map=device,
|
21 |
torch_dtype=torch.bfloat16,
|
@@ -23,19 +23,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
23 |
)
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
|
26 |
-
upsampler = pipeline(
|
27 |
-
"text-generation",
|
28 |
-
model=model,
|
29 |
-
tokenizer=tokenizer,
|
30 |
-
)
|
31 |
-
|
32 |
-
generation_args = {
|
33 |
-
"max_new_tokens": 300,
|
34 |
-
"return_full_text": False,
|
35 |
-
"temperature": 0.7,
|
36 |
-
"do_sample": True,
|
37 |
-
}
|
38 |
-
|
39 |
MAX_SEED = np.iinfo(np.int32).max
|
40 |
MAX_IMAGE_SIZE = 1344
|
41 |
|
@@ -54,8 +41,18 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
54 |
{"role": "assistant", "content": "A gourmet scene in a high-end restaurant kitchen where a chef is presenting a plate of cooked beef testicles, garnished elegantly with herbs and spices. The chef, a middle-aged Caucasian man wearing a white chef's hat and coat, is inspecting the dish with a satisfied expression. The kitchen background is bustling with other chefs and kitchen staff, and the atmosphere is warm and inviting with hanging pots and pans, and a glowing, busy stove in the background. The focus is on the chef's proud presentation of this unusual but delicately prepared dish."},
|
55 |
{"role": "user", "content": prompt},
|
56 |
]
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
print(upsampled_prompt)
|
61 |
|
|
|
15 |
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16, revision="refs/pr/26",token=os.environ["TOKEN"]).to(device)
|
16 |
|
17 |
model_id = "microsoft/Phi-3-medium-128k-instruct"
|
18 |
+
upsampler = AutoModelForCausalLM.from_pretrained(
|
19 |
model_id,
|
20 |
device_map=device,
|
21 |
torch_dtype=torch.bfloat16,
|
|
|
23 |
)
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
MAX_SEED = np.iinfo(np.int32).max
|
27 |
MAX_IMAGE_SIZE = 1344
|
28 |
|
|
|
41 |
{"role": "assistant", "content": "A gourmet scene in a high-end restaurant kitchen where a chef is presenting a plate of cooked beef testicles, garnished elegantly with herbs and spices. The chef, a middle-aged Caucasian man wearing a white chef's hat and coat, is inspecting the dish with a satisfied expression. The kitchen background is bustling with other chefs and kitchen staff, and the atmosphere is warm and inviting with hanging pots and pans, and a glowing, busy stove in the background. The focus is on the chef's proud presentation of this unusual but delicately prepared dish."},
|
42 |
{"role": "user", "content": prompt},
|
43 |
]
|
44 |
+
tokenized_input = tokenizer.apply_chat_templete(messages, add_special_tokens=False, add_generate_prompt=True, return_tensors="pt").to(model.device)
|
45 |
+
with torch.inference_mode():
|
46 |
+
output = upsampler.generate(
|
47 |
+
tokenized_input,
|
48 |
+
max_new_tokens=512,
|
49 |
+
do_sample=True,
|
50 |
+
top_p=0.95,
|
51 |
+
temperature=0.7,
|
52 |
+
repetition_penalty=1.05,
|
53 |
+
)[0]
|
54 |
+
print(tokenizer.decode(output))
|
55 |
+
upsampled_prompt=output['generated_text']
|
56 |
|
57 |
print(upsampled_prompt)
|
58 |
|